From: Enrico Jorns <ejo@pengutronix.de>
To: barebox@lists.infradead.org
Cc: Enrico Jorns <ejo@pengutronix.de>
Subject: [PATCH 2/4] mtd nand_denali: Add denali nand driver
Date: Mon, 21 Sep 2015 16:04:42 +0200 [thread overview]
Message-ID: <1442844284-27870-3-git-send-email-ejo@pengutronix.de> (raw)
In-Reply-To: <1442844284-27870-1-git-send-email-ejo@pengutronix.de>
The driver is based on the denali driver from the linux kernel
Signed-off-by: Enrico Jorns <ejo@pengutronix.de>
---
drivers/mtd/nand/Kconfig | 26 +
drivers/mtd/nand/Makefile | 3 +
drivers/mtd/nand/denali.h | 499 ++++++++++++
drivers/mtd/nand/nand_denali.c | 1559 +++++++++++++++++++++++++++++++++++++
drivers/mtd/nand/nand_denali_dt.c | 101 +++
5 files changed, 2188 insertions(+)
create mode 100644 drivers/mtd/nand/denali.h
create mode 100644 drivers/mtd/nand/nand_denali.c
create mode 100644 drivers/mtd/nand/nand_denali_dt.c
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index a75540b..ff26584 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -140,4 +140,30 @@ config MTD_NAND_NOMADIK
help
Driver for the NAND flash controller on the Nomadik, with ECC.
+config MTD_NAND_DENALI
+ tristate "Support Denali NAND controller"
+ depends on HAS_DMA
+ help
+ Enable support for the Denali NAND controller. This should be
+ combined with either the PCI or platform drivers to provide device
+ registration.
+
+config MTD_NAND_DENALI_DT
+ tristate "Support Denali NAND controller as a DT device"
+ depends on HAVE_CLK && MTD_NAND_DENALI
+ help
+ Enable the driver for NAND flash on platforms using a Denali NAND
+ controller as a DT device.
+
+if MTD_NAND_DENALI
+
+config MTD_NAND_DENALI_TIMING_MODE
+ int "Overrides default ONFI timing mode."
+ default -1
+ range -1 5
+ help
+ -1 indicates use default timings
+
+endif
+
endif
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index a0b3198..8809238 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -16,3 +16,6 @@ obj-$(CONFIG_NAND_ATMEL) += atmel_nand.o
obj-$(CONFIG_NAND_S3C24XX) += nand_s3c24xx.o
pbl-$(CONFIG_NAND_S3C24XX) += nand_s3c24xx.o
obj-$(CONFIG_NAND_MXS) += nand_mxs.o
+obj-$(CONFIG_MTD_NAND_DENALI) += nand_denali.o
+obj-$(CONFIG_MTD_NAND_DENALI_DT) += nand_denali_dt.o
+
diff --git a/drivers/mtd/nand/denali.h b/drivers/mtd/nand/denali.h
new file mode 100644
index 0000000..f5511c9
--- /dev/null
+++ b/drivers/mtd/nand/denali.h
@@ -0,0 +1,499 @@
+/*
+ * NAND Flash Controller Device Driver
+ * Copyright (c) 2009 - 2010, Intel Corporation and its suppliers.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ */
+
+#ifndef __DENALI_H__
+#define __DENALI_H__
+
+#include <linux/mtd/nand.h>
+
+#define DEVICE_RESET 0x0
+#define DEVICE_RESET__BANK0 0x0001
+#define DEVICE_RESET__BANK1 0x0002
+#define DEVICE_RESET__BANK2 0x0004
+#define DEVICE_RESET__BANK3 0x0008
+
+#define TRANSFER_SPARE_REG 0x10
+#define TRANSFER_SPARE_REG__FLAG 0x0001
+
+#define LOAD_WAIT_CNT 0x20
+#define LOAD_WAIT_CNT__VALUE 0xffff
+
+#define PROGRAM_WAIT_CNT 0x30
+#define PROGRAM_WAIT_CNT__VALUE 0xffff
+
+#define ERASE_WAIT_CNT 0x40
+#define ERASE_WAIT_CNT__VALUE 0xffff
+
+#define INT_MON_CYCCNT 0x50
+#define INT_MON_CYCCNT__VALUE 0xffff
+
+#define RB_PIN_ENABLED 0x60
+#define RB_PIN_ENABLED__BANK0 0x0001
+#define RB_PIN_ENABLED__BANK1 0x0002
+#define RB_PIN_ENABLED__BANK2 0x0004
+#define RB_PIN_ENABLED__BANK3 0x0008
+
+#define MULTIPLANE_OPERATION 0x70
+#define MULTIPLANE_OPERATION__FLAG 0x0001
+
+#define MULTIPLANE_READ_ENABLE 0x80
+#define MULTIPLANE_READ_ENABLE__FLAG 0x0001
+
+#define COPYBACK_DISABLE 0x90
+#define COPYBACK_DISABLE__FLAG 0x0001
+
+#define CACHE_WRITE_ENABLE 0xa0
+#define CACHE_WRITE_ENABLE__FLAG 0x0001
+
+#define CACHE_READ_ENABLE 0xb0
+#define CACHE_READ_ENABLE__FLAG 0x0001
+
+#define PREFETCH_MODE 0xc0
+#define PREFETCH_MODE__PREFETCH_EN 0x0001
+#define PREFETCH_MODE__PREFETCH_BURST_LENGTH 0xfff0
+
+#define CHIP_ENABLE_DONT_CARE 0xd0
+#define CHIP_EN_DONT_CARE__FLAG 0x01
+
+#define ECC_ENABLE 0xe0
+#define ECC_ENABLE__FLAG 0x0001
+
+#define GLOBAL_INT_ENABLE 0xf0
+#define GLOBAL_INT_EN_FLAG 0x01
+
+#define WE_2_RE 0x100
+#define WE_2_RE__VALUE 0x003f
+
+#define ADDR_2_DATA 0x110
+#define ADDR_2_DATA__VALUE 0x003f
+
+#define RE_2_WE 0x120
+#define RE_2_WE__VALUE 0x003f
+
+#define ACC_CLKS 0x130
+#define ACC_CLKS__VALUE 0x000f
+
+#define NUMBER_OF_PLANES 0x140
+#define NUMBER_OF_PLANES__VALUE 0x0007
+
+#define PAGES_PER_BLOCK 0x150
+#define PAGES_PER_BLOCK__VALUE 0xffff
+
+#define DEVICE_WIDTH 0x160
+#define DEVICE_WIDTH__VALUE 0x0003
+
+#define DEVICE_MAIN_AREA_SIZE 0x170
+#define DEVICE_MAIN_AREA_SIZE__VALUE 0xffff
+
+#define DEVICE_SPARE_AREA_SIZE 0x180
+#define DEVICE_SPARE_AREA_SIZE__VALUE 0xffff
+
+#define TWO_ROW_ADDR_CYCLES 0x190
+#define TWO_ROW_ADDR_CYCLES__FLAG 0x0001
+
+#define MULTIPLANE_ADDR_RESTRICT 0x1a0
+#define MULTIPLANE_ADDR_RESTRICT__FLAG 0x0001
+
+#define ECC_CORRECTION 0x1b0
+#define ECC_CORRECTION__VALUE 0x001f
+
+#define READ_MODE 0x1c0
+#define READ_MODE__VALUE 0x000f
+
+#define WRITE_MODE 0x1d0
+#define WRITE_MODE__VALUE 0x000f
+
+#define COPYBACK_MODE 0x1e0
+#define COPYBACK_MODE__VALUE 0x000f
+
+#define RDWR_EN_LO_CNT 0x1f0
+#define RDWR_EN_LO_CNT__VALUE 0x001f
+
+#define RDWR_EN_HI_CNT 0x200
+#define RDWR_EN_HI_CNT__VALUE 0x001f
+
+#define MAX_RD_DELAY 0x210
+#define MAX_RD_DELAY__VALUE 0x000f
+
+#define CS_SETUP_CNT 0x220
+#define CS_SETUP_CNT__VALUE 0x001f
+
+#define SPARE_AREA_SKIP_BYTES 0x230
+#define SPARE_AREA_SKIP_BYTES__VALUE 0x003f
+
+#define SPARE_AREA_MARKER 0x240
+#define SPARE_AREA_MARKER__VALUE 0xffff
+
+#define DEVICES_CONNECTED 0x250
+#define DEVICES_CONNECTED__VALUE 0x0007
+
+#define DIE_MASK 0x260
+#define DIE_MASK__VALUE 0x00ff
+
+#define FIRST_BLOCK_OF_NEXT_PLANE 0x270
+#define FIRST_BLOCK_OF_NEXT_PLANE__VALUE 0xffff
+
+#define WRITE_PROTECT 0x280
+#define WRITE_PROTECT__FLAG 0x0001
+
+#define RE_2_RE 0x290
+#define RE_2_RE__VALUE 0x003f
+
+#define MANUFACTURER_ID 0x300
+#define MANUFACTURER_ID__VALUE 0x00ff
+
+#define DEVICE_ID 0x310
+#define DEVICE_ID__VALUE 0x00ff
+
+#define DEVICE_PARAM_0 0x320
+#define DEVICE_PARAM_0__VALUE 0x00ff
+
+#define DEVICE_PARAM_1 0x330
+#define DEVICE_PARAM_1__VALUE 0x00ff
+
+#define DEVICE_PARAM_2 0x340
+#define DEVICE_PARAM_2__VALUE 0x00ff
+
+#define LOGICAL_PAGE_DATA_SIZE 0x350
+#define LOGICAL_PAGE_DATA_SIZE__VALUE 0xffff
+
+#define LOGICAL_PAGE_SPARE_SIZE 0x360
+#define LOGICAL_PAGE_SPARE_SIZE__VALUE 0xffff
+
+#define REVISION 0x370
+#define REVISION__VALUE 0xffff
+
+#define ONFI_DEVICE_FEATURES 0x380
+#define ONFI_DEVICE_FEATURES__VALUE 0x003f
+
+#define ONFI_OPTIONAL_COMMANDS 0x390
+#define ONFI_OPTIONAL_COMMANDS__VALUE 0x003f
+
+#define ONFI_TIMING_MODE 0x3a0
+#define ONFI_TIMING_MODE__VALUE 0x003f
+
+#define ONFI_PGM_CACHE_TIMING_MODE 0x3b0
+#define ONFI_PGM_CACHE_TIMING_MODE__VALUE 0x003f
+
+#define ONFI_DEVICE_NO_OF_LUNS 0x3c0
+#define ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS 0x00ff
+#define ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE 0x0100
+
+#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L 0x3d0
+#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L__VALUE 0xffff
+
+#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U 0x3e0
+#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U__VALUE 0xffff
+
+#define FEATURES 0x3f0
+#define FEATURES__N_BANKS 0x0003
+#define FEATURES__ECC_MAX_ERR 0x003c
+#define FEATURES__DMA 0x0040
+#define FEATURES__CMD_DMA 0x0080
+#define FEATURES__PARTITION 0x0100
+#define FEATURES__XDMA_SIDEBAND 0x0200
+#define FEATURES__GPREG 0x0400
+#define FEATURES__INDEX_ADDR 0x0800
+
+#define TRANSFER_MODE 0x400
+#define TRANSFER_MODE__VALUE 0x0003
+
+#define INTR_STATUS(__bank) (0x410 + ((__bank) * 0x50))
+#define INTR_EN(__bank) (0x420 + ((__bank) * 0x50))
+
+/*
+ * Some versions of the IP have the ECC fixup handled in hardware. In this
+ * configuration we only get interrupted when the error is uncorrectable.
+ * Unfortunately this bit replaces INTR_STATUS__ECC_TRANSACTION_DONE from the
+ * old IP.
+ * taken from patch by Jamie Iles <jamie at jamieiles.com>
+ * support hardware with internal ECC fixup
+ */
+#define INTR_STATUS__ECC_UNCOR_ERR 0x0001
+
+#define INTR_STATUS__ECC_TRANSACTION_DONE 0x0001
+#define INTR_STATUS__ECC_ERR 0x0002
+#define INTR_STATUS__DMA_CMD_COMP 0x0004
+#define INTR_STATUS__TIME_OUT 0x0008
+#define INTR_STATUS__PROGRAM_FAIL 0x0010
+#define INTR_STATUS__ERASE_FAIL 0x0020
+#define INTR_STATUS__LOAD_COMP 0x0040
+#define INTR_STATUS__PROGRAM_COMP 0x0080
+#define INTR_STATUS__ERASE_COMP 0x0100
+#define INTR_STATUS__PIPE_CPYBCK_CMD_COMP 0x0200
+#define INTR_STATUS__LOCKED_BLK 0x0400
+#define INTR_STATUS__UNSUP_CMD 0x0800
+#define INTR_STATUS__INT_ACT 0x1000
+#define INTR_STATUS__RST_COMP 0x2000
+#define INTR_STATUS__PIPE_CMD_ERR 0x4000
+#define INTR_STATUS__PAGE_XFER_INC 0x8000
+
+#define INTR_EN__ECC_TRANSACTION_DONE 0x0001
+#define INTR_EN__ECC_ERR 0x0002
+#define INTR_EN__DMA_CMD_COMP 0x0004
+#define INTR_EN__TIME_OUT 0x0008
+#define INTR_EN__PROGRAM_FAIL 0x0010
+#define INTR_EN__ERASE_FAIL 0x0020
+#define INTR_EN__LOAD_COMP 0x0040
+#define INTR_EN__PROGRAM_COMP 0x0080
+#define INTR_EN__ERASE_COMP 0x0100
+#define INTR_EN__PIPE_CPYBCK_CMD_COMP 0x0200
+#define INTR_EN__LOCKED_BLK 0x0400
+#define INTR_EN__UNSUP_CMD 0x0800
+#define INTR_EN__INT_ACT 0x1000
+#define INTR_EN__RST_COMP 0x2000
+#define INTR_EN__PIPE_CMD_ERR 0x4000
+#define INTR_EN__PAGE_XFER_INC 0x8000
+
+#define PAGE_CNT(__bank) (0x430 + ((__bank) * 0x50))
+#define ERR_PAGE_ADDR(__bank) (0x440 + ((__bank) * 0x50))
+#define ERR_BLOCK_ADDR(__bank) (0x450 + ((__bank) * 0x50))
+
+#define DATA_INTR 0x550
+#define DATA_INTR__WRITE_SPACE_AV 0x0001
+#define DATA_INTR__READ_DATA_AV 0x0002
+
+#define DATA_INTR_EN 0x560
+#define DATA_INTR_EN__WRITE_SPACE_AV 0x0001
+#define DATA_INTR_EN__READ_DATA_AV 0x0002
+
+#define GPREG_0 0x570
+#define GPREG_0__VALUE 0xffff
+
+#define GPREG_1 0x580
+#define GPREG_1__VALUE 0xffff
+
+#define GPREG_2 0x590
+#define GPREG_2__VALUE 0xffff
+
+#define GPREG_3 0x5a0
+#define GPREG_3__VALUE 0xffff
+
+#define ECC_THRESHOLD 0x600
+#define ECC_THRESHOLD__VALUE 0x03ff
+
+#define ECC_ERROR_BLOCK_ADDRESS 0x610
+#define ECC_ERROR_BLOCK_ADDRESS__VALUE 0xffff
+
+#define ECC_ERROR_PAGE_ADDRESS 0x620
+#define ECC_ERROR_PAGE_ADDRESS__VALUE 0x0fff
+#define ECC_ERROR_PAGE_ADDRESS__BANK 0xf000
+
+#define ECC_ERROR_ADDRESS 0x630
+#define ECC_ERROR_ADDRESS__OFFSET 0x0fff
+#define ECC_ERROR_ADDRESS__SECTOR_NR 0xf000
+
+#define ERR_CORRECTION_INFO 0x640
+#define ERR_CORRECTION_INFO__BYTEMASK 0x00ff
+#define ERR_CORRECTION_INFO__DEVICE_NR 0x0f00
+#define ERR_CORRECTION_INFO__ERROR_TYPE 0x4000
+#define ERR_CORRECTION_INFO__LAST_ERR_INFO 0x8000
+
+#define DMA_ENABLE 0x700
+#define DMA_ENABLE__FLAG 0x0001
+
+#define IGNORE_ECC_DONE 0x710
+#define IGNORE_ECC_DONE__FLAG 0x0001
+
+#define DMA_INTR 0x720
+#define DMA_INTR__TARGET_ERROR 0x0001
+#define DMA_INTR__DESC_COMP_CHANNEL0 0x0002
+#define DMA_INTR__DESC_COMP_CHANNEL1 0x0004
+#define DMA_INTR__DESC_COMP_CHANNEL2 0x0008
+#define DMA_INTR__DESC_COMP_CHANNEL3 0x0010
+#define DMA_INTR__MEMCOPY_DESC_COMP 0x0020
+
+#define DMA_INTR_EN 0x730
+#define DMA_INTR_EN__TARGET_ERROR 0x0001
+#define DMA_INTR_EN__DESC_COMP_CHANNEL0 0x0002
+#define DMA_INTR_EN__DESC_COMP_CHANNEL1 0x0004
+#define DMA_INTR_EN__DESC_COMP_CHANNEL2 0x0008
+#define DMA_INTR_EN__DESC_COMP_CHANNEL3 0x0010
+#define DMA_INTR_EN__MEMCOPY_DESC_COMP 0x0020
+
+#define TARGET_ERR_ADDR_LO 0x740
+#define TARGET_ERR_ADDR_LO__VALUE 0xffff
+
+#define TARGET_ERR_ADDR_HI 0x750
+#define TARGET_ERR_ADDR_HI__VALUE 0xffff
+
+#define CHNL_ACTIVE 0x760
+#define CHNL_ACTIVE__CHANNEL0 0x0001
+#define CHNL_ACTIVE__CHANNEL1 0x0002
+#define CHNL_ACTIVE__CHANNEL2 0x0004
+#define CHNL_ACTIVE__CHANNEL3 0x0008
+
+#define FLASH_BURST_LENGTH 0x770
+#define CHIP_INTERLEAVE_ENABLE_AND_ALLOW_INT_READS 0X780
+#define NO_OF_BLOCKS_PER_LUN 0X790
+#define LUN_STATUS_CMD 0X7A0
+
+#define ACTIVE_SRC_ID 0x800
+#define ACTIVE_SRC_ID__VALUE 0x00ff
+
+#define PTN_INTR 0x810
+#define PTN_INTR__CONFIG_ERROR 0x0001
+#define PTN_INTR__ACCESS_ERROR_BANK0 0x0002
+#define PTN_INTR__ACCESS_ERROR_BANK1 0x0004
+#define PTN_INTR__ACCESS_ERROR_BANK2 0x0008
+#define PTN_INTR__ACCESS_ERROR_BANK3 0x0010
+#define PTN_INTR__REG_ACCESS_ERROR 0x0020
+
+#define PTN_INTR_EN 0x820
+#define PTN_INTR_EN__CONFIG_ERROR 0x0001
+#define PTN_INTR_EN__ACCESS_ERROR_BANK0 0x0002
+#define PTN_INTR_EN__ACCESS_ERROR_BANK1 0x0004
+#define PTN_INTR_EN__ACCESS_ERROR_BANK2 0x0008
+#define PTN_INTR_EN__ACCESS_ERROR_BANK3 0x0010
+#define PTN_INTR_EN__REG_ACCESS_ERROR 0x0020
+
+#define PERM_SRC_ID(__bank) (0x830 + ((__bank) * 0x40))
+#define PERM_SRC_ID__SRCID 0x00ff
+#define PERM_SRC_ID__DIRECT_ACCESS_ACTIVE 0x0800
+#define PERM_SRC_ID__WRITE_ACTIVE 0x2000
+#define PERM_SRC_ID__READ_ACTIVE 0x4000
+#define PERM_SRC_ID__PARTITION_VALID 0x8000
+
+#define MIN_BLK_ADDR(__bank) (0x840 + ((__bank) * 0x40))
+#define MIN_BLK_ADDR__VALUE 0xffff
+
+#define MAX_BLK_ADDR(__bank) (0x850 + ((__bank) * 0x40))
+#define MAX_BLK_ADDR__VALUE 0xffff
+
+#define MIN_MAX_BANK(__bank) (0x860 + ((__bank) * 0x40))
+#define MIN_MAX_BANK__MIN_VALUE 0x0003
+#define MIN_MAX_BANK__MAX_VALUE 0x000c
+
+
+/* ffsdefs.h */
+#define CLEAR 0 /*use this to clear a field instead of "fail"*/
+#define SET 1 /*use this to set a field instead of "pass"*/
+#define FAIL 1 /*failed flag*/
+#define PASS 0 /*success flag*/
+#define ERR -1 /*error flag*/
+
+/* lld.h */
+#define GOOD_BLOCK 0
+#define DEFECTIVE_BLOCK 1
+#define READ_ERROR 2
+
+#define CLK_X 5
+#define CLK_MULTI 4
+
+/* spectraswconfig.h */
+#define CMD_DMA 0
+
+#define SPECTRA_PARTITION_ID 0
+/**** Block Table and Reserved Block Parameters *****/
+#define SPECTRA_START_BLOCK 3
+#define NUM_FREE_BLOCKS_GATE 30
+
+/* KBV - Updated to LNW scratch register address */
+#define SCRATCH_REG_ADDR CONFIG_MTD_NAND_DENALI_SCRATCH_REG_ADDR
+#define SCRATCH_REG_SIZE 64
+
+#define GLOB_HWCTL_DEFAULT_BLKS 2048
+
+#define SUPPORT_15BITECC 1
+#define SUPPORT_8BITECC 1
+
+#define CUSTOM_CONF_PARAMS 0
+
+#define ONFI_BLOOM_TIME 1
+#define MODE5_WORKAROUND 0
+
+
+#define MODE_00 0x00000000
+#define MODE_01 0x04000000
+#define MODE_10 0x08000000
+#define MODE_11 0x0C000000
+
+
+#define DATA_TRANSFER_MODE 0
+#define PROTECTION_PER_BLOCK 1
+#define LOAD_WAIT_COUNT 2
+#define PROGRAM_WAIT_COUNT 3
+#define ERASE_WAIT_COUNT 4
+#define INT_MONITOR_CYCLE_COUNT 5
+#define READ_BUSY_PIN_ENABLED 6
+#define MULTIPLANE_OPERATION_SUPPORT 7
+#define PRE_FETCH_MODE 8
+#define CE_DONT_CARE_SUPPORT 9
+#define COPYBACK_SUPPORT 10
+#define CACHE_WRITE_SUPPORT 11
+#define CACHE_READ_SUPPORT 12
+#define NUM_PAGES_IN_BLOCK 13
+#define ECC_ENABLE_SELECT 14
+#define WRITE_ENABLE_2_READ_ENABLE 15
+#define ADDRESS_2_DATA 16
+#define READ_ENABLE_2_WRITE_ENABLE 17
+#define TWO_ROW_ADDRESS_CYCLES 18
+#define MULTIPLANE_ADDRESS_RESTRICT 19
+#define ACC_CLOCKS 20
+#define READ_WRITE_ENABLE_LOW_COUNT 21
+#define READ_WRITE_ENABLE_HIGH_COUNT 22
+
+#define ECC_SECTOR_SIZE 512
+
+struct nand_buf {
+ int head;
+ int tail;
+ uint8_t *buf;
+ dma_addr_t dma_buf;
+};
+
+#define INTEL_CE4100 1
+#define INTEL_MRST 2
+#define DT 3
+
+struct denali_nand_info {
+ struct mtd_info mtd;
+ struct nand_chip nand;
+ int flash_bank; /* currently selected chip */
+ int status;
+ int platform;
+ struct nand_buf buf;
+ struct device_d *dev;
+ int total_used_banks;
+ uint32_t block; /* stored for future use */
+ uint32_t page;
+ void __iomem *flash_reg; /* Mapped io reg base address */
+ void __iomem *flash_mem; /* Mapped io reg base address */
+
+ /* elements used by ISR */
+ //struct completion complete;
+ spinlock_t irq_lock;
+ uint32_t irq_status;
+ int irq_debug_array[32];
+ int idx;
+ int irq;
+
+ uint32_t devnum; /* represent how many nands connected */
+ uint32_t fwblks; /* represent how many blocks FW used */
+ uint32_t totalblks;
+ uint32_t blksperchip;
+ uint32_t bbtskipbytes;
+ uint32_t max_banks;
+ bool have_hw_ecc_fixup;
+};
+
+extern int denali_init(struct denali_nand_info *denali);
+extern void denali_remove(struct denali_nand_info *denali);
+
+#endif /* __DENALI_H__ */
diff --git a/drivers/mtd/nand/nand_denali.c b/drivers/mtd/nand/nand_denali.c
new file mode 100644
index 0000000..f2d9cb7
--- /dev/null
+++ b/drivers/mtd/nand/nand_denali.c
@@ -0,0 +1,1559 @@
+/*
+ * NAND Flash Controller Device Driver
+ * Copyright © 2009-2010, Intel Corporation and its suppliers.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ */
+
+#include <common.h>
+#include <dma.h>
+#include <driver.h>
+#include <malloc.h>
+#include <init.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <mach/generic.h>
+#include <io.h>
+#include <of_mtd.h>
+#include <errno.h>
+#include <asm/io.h>
+#include "denali.h"
+
+#define NAND_DEFAULT_TIMINGS -1
+
+static int onfi_timing_mode = CONFIG_MTD_NAND_DENALI_TIMING_MODE;
+
+#define DENALI_NAND_NAME "denali-nand"
+
+/*
+ * We define a macro here that combines all interrupts this driver uses into
+ * a single constant value, for convenience.
+ */
+#define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
+ INTR_STATUS__ECC_TRANSACTION_DONE | \
+ INTR_STATUS__ECC_ERR | \
+ INTR_STATUS__PROGRAM_FAIL | \
+ INTR_STATUS__LOAD_COMP | \
+ INTR_STATUS__PROGRAM_COMP | \
+ INTR_STATUS__TIME_OUT | \
+ INTR_STATUS__ERASE_FAIL | \
+ INTR_STATUS__RST_COMP | \
+ INTR_STATUS__ERASE_COMP | \
+ INTR_STATUS__ECC_UNCOR_ERR)
+/* And here we use a variable for interrupt mask, bcs we want to
+ * change the irq mask during init. That is, we want to enable R/B
+ * interrupt during init, but not at other times */
+static uint32_t denali_irq_mask = DENALI_IRQ_ALL;
+
+
+/*
+ * indicates whether or not the internal value for the flash bank is
+ * valid or not
+ */
+#define CHIP_SELECT_INVALID -1
+
+#define SUPPORT_8BITECC 1
+
+/*
+ * This macro divides two integers and rounds fractional values up
+ * to the nearest integer value.
+ */
+#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
+
+/*
+ * this macro allows us to convert from an MTD structure to our own
+ * device context (denali) structure.
+ */
+#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
+
+/*
+ * These constants are defined by the driver to enable common driver
+ * configuration options.
+ */
+#define SPARE_ACCESS 0x41
+#define MAIN_ACCESS 0x42
+#define MAIN_SPARE_ACCESS 0x43
+#define PIPELINE_ACCESS 0x2000
+
+#define DENALI_READ 0
+#define DENALI_WRITE 0x100
+
+/* types of device accesses. We can issue commands and get status */
+#define COMMAND_CYCLE 0
+#define ADDR_CYCLE 1
+#define STATUS_CYCLE 2
+
+/*
+ * this is a helper macro that allows us to
+ * format the bank into the proper bits for the controller
+ */
+#define BANK(x) ((x) << 24)
+
+/* forward declarations */
+static void clear_interrupts(struct denali_nand_info *denali);
+static uint32_t wait_for_irq(struct denali_nand_info *denali,
+ uint32_t irq_mask);
+static void denali_irq_enable(struct denali_nand_info *denali,
+ uint32_t int_mask);
+static uint32_t read_interrupt_status(struct denali_nand_info *denali);
+
+/*
+ * Certain operations for the denali NAND controller use an indexed mode to
+ * read/write data. The operation is performed by writing the address value
+ * of the command to the device memory followed by the data. This function
+ * abstracts this common operation.
+ */
+static void index_addr(struct denali_nand_info *denali,
+ uint32_t address, uint32_t data)
+{
+ iowrite32(address, denali->flash_mem);
+ iowrite32(data, denali->flash_mem + 0x10);
+}
+
+/* Perform an indexed read of the device */
+static void index_addr_read_data(struct denali_nand_info *denali,
+ uint32_t address, uint32_t *pdata)
+{
+ iowrite32(address, denali->flash_mem);
+ *pdata = ioread32(denali->flash_mem + 0x10);
+}
+
+/*
+ * We need to buffer some data for some of the NAND core routines.
+ * The operations manage buffering that data.
+ */
+static void reset_buf(struct denali_nand_info *denali)
+{
+ denali->buf.head = denali->buf.tail = 0;
+}
+
+static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
+{
+ denali->buf.buf[denali->buf.tail++] = byte;
+}
+
+/* reads the status of the device */
+static void read_status(struct denali_nand_info *denali)
+{
+ uint32_t cmd;
+
+ /* initialize the data buffer to store status */
+ reset_buf(denali);
+
+ cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
+ if (cmd)
+ write_byte_to_buf(denali, NAND_STATUS_WP);
+ else
+ write_byte_to_buf(denali, 0);
+}
+
+/* resets a specific device connected to the core */
+static void reset_bank(struct denali_nand_info *denali)
+{
+ iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
+
+ /* wait for completion */
+ while (ioread32(denali->flash_reg + DEVICE_RESET) & (1 << denali->flash_bank))
+ barrier();
+}
+
+/* Reset the flash controller */
+static uint16_t denali_nand_reset(struct denali_nand_info *denali)
+{
+ int i;
+
+ dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ for (i = 0; i < denali->max_banks; i++)
+ iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
+ denali->flash_reg + INTR_STATUS(i));
+
+ for (i = 0; i < denali->max_banks; i++) {
+ iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
+ while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) &
+ (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
+ /* cpu_relax(); */
+ barrier();
+ if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
+ INTR_STATUS__TIME_OUT)
+ dev_dbg(denali->dev,
+ "NAND Reset operation timed out on bank %d\n", i);
+ }
+
+ for (i = 0; i < denali->max_banks; i++)
+ iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
+ denali->flash_reg + INTR_STATUS(i));
+
+ return PASS;
+}
+
+/*
+ * this routine calculates the ONFI timing values for a given mode and
+ * programs the clocking register accordingly. The mode is determined by
+ * the get_onfi_nand_para routine.
+ */
+static void nand_onfi_timing_set(struct denali_nand_info *denali,
+ uint16_t mode)
+{
+ uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
+ uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
+ uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
+ uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
+ uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
+ uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
+ uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
+ uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
+ uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
+ uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
+ uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
+ uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
+
+ uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
+ uint16_t dv_window = 0;
+ uint16_t en_lo, en_hi;
+ uint16_t acc_clks;
+ uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
+
+ dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ en_lo = CEIL_DIV(Trp[mode], CLK_X);
+ en_hi = CEIL_DIV(Treh[mode], CLK_X);
+#if ONFI_BLOOM_TIME
+ if ((en_hi * CLK_X) < (Treh[mode] + 2))
+ en_hi++;
+#endif
+
+ if ((en_lo + en_hi) * CLK_X < Trc[mode])
+ en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
+
+ if ((en_lo + en_hi) < CLK_MULTI)
+ en_lo += CLK_MULTI - en_lo - en_hi;
+
+ while (dv_window < 8) {
+ data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
+
+ data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
+
+ data_invalid = data_invalid_rhoh < data_invalid_rloh ?
+ data_invalid_rhoh : data_invalid_rloh;
+
+ dv_window = data_invalid - Trea[mode];
+
+ if (dv_window < 8)
+ en_lo++;
+ }
+
+ acc_clks = CEIL_DIV(Trea[mode], CLK_X);
+
+ while (acc_clks * CLK_X - Trea[mode] < 3)
+ acc_clks++;
+
+ if (data_invalid - acc_clks * CLK_X < 2)
+ dev_warn(denali->dev, "%s, Line %d: Warning!\n",
+ __FILE__, __LINE__);
+
+ addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
+ re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
+ re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
+ we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
+ cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
+ if (cs_cnt == 0)
+ cs_cnt = 1;
+
+ if (Tcea[mode]) {
+ while (cs_cnt * CLK_X + Trea[mode] < Tcea[mode])
+ cs_cnt++;
+ }
+
+#if MODE5_WORKAROUND
+ if (mode == 5)
+ acc_clks = 5;
+#endif
+
+ /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
+ if (ioread32(denali->flash_reg + MANUFACTURER_ID) == 0 &&
+ ioread32(denali->flash_reg + DEVICE_ID) == 0x88)
+ acc_clks = 6;
+
+ iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
+ iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
+ iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
+ iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
+ iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
+ iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
+ iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
+ iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
+}
+
+/* queries the NAND device to see what ONFI modes it supports. */
+static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
+{
+ int i;
+
+ /*
+ * we needn't to do a reset here because driver has already
+ * reset all the banks before
+ */
+ if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
+ ONFI_TIMING_MODE__VALUE))
+ return FAIL;
+
+ for (i = 5; i > 0; i--) {
+ if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
+ (0x01 << i))
+ break;
+ }
+
+ nand_onfi_timing_set(denali, i);
+
+ /*
+ * By now, all the ONFI devices we know support the page cache
+ * rw feature. So here we enable the pipeline_rw_ahead feature
+ */
+ /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
+ /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
+
+ return PASS;
+}
+
+static void get_samsung_nand_para(struct denali_nand_info *denali,
+ uint8_t device_id)
+{
+ if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
+ /* Set timing register values according to datasheet */
+ iowrite32(5, denali->flash_reg + ACC_CLKS);
+ iowrite32(20, denali->flash_reg + RE_2_WE);
+ iowrite32(12, denali->flash_reg + WE_2_RE);
+ iowrite32(14, denali->flash_reg + ADDR_2_DATA);
+ iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
+ iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
+ iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
+ }
+}
+
+static void get_toshiba_nand_para(struct denali_nand_info *denali)
+{
+ uint32_t tmp;
+
+ /*
+ * Workaround to fix a controller bug which reports a wrong
+ * spare area size for some kind of Toshiba NAND device
+ */
+ if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
+ (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
+ iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+ tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
+ ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+ iowrite32(tmp,
+ denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+#if SUPPORT_15BITECC
+ iowrite32(15, denali->flash_reg + ECC_CORRECTION);
+#elif SUPPORT_8BITECC
+ iowrite32(8, denali->flash_reg + ECC_CORRECTION);
+#endif
+ }
+}
+
+static void get_hynix_nand_para(struct denali_nand_info *denali,
+ uint8_t device_id)
+{
+ uint32_t main_size, spare_size;
+
+ switch (device_id) {
+ case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
+ case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
+ iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
+ iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
+ iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+ main_size = 4096 *
+ ioread32(denali->flash_reg + DEVICES_CONNECTED);
+ spare_size = 224 *
+ ioread32(denali->flash_reg + DEVICES_CONNECTED);
+ iowrite32(main_size,
+ denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
+ iowrite32(spare_size,
+ denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+ iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
+#if SUPPORT_15BITECC
+ iowrite32(15, denali->flash_reg + ECC_CORRECTION);
+#elif SUPPORT_8BITECC
+ iowrite32(8, denali->flash_reg + ECC_CORRECTION);
+#endif
+ break;
+ default:
+ dev_warn(denali->dev,
+ "Spectra: Unknown Hynix NAND (Device ID: 0x%x).\n"
+ "Will use default parameter values instead.\n",
+ device_id);
+ }
+}
+
+/*
+ * determines how many NAND chips are connected to the controller. Note for
+ * Intel CE4100 devices we don't support more than one device.
+ */
+static void find_valid_banks(struct denali_nand_info *denali)
+{
+ uint32_t id[denali->max_banks];
+ int i;
+
+ denali->total_used_banks = 1;
+ for (i = 0; i < denali->max_banks; i++) {
+ index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
+ index_addr(denali, MODE_11 | (i << 24) | 1, 0);
+ index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]);
+
+ dev_dbg(denali->dev,
+ "Return 1st ID for bank[%d]: %x\n", i, id[i]);
+
+ if (i == 0) {
+ if (!(id[i] & 0x0ff))
+ break; /* WTF? */
+ } else {
+ if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
+ denali->total_used_banks++;
+ else
+ break;
+ }
+ }
+
+ if (denali->platform == INTEL_CE4100) {
+ /*
+ * Platform limitations of the CE4100 device limit
+ * users to a single chip solution for NAND.
+ * Multichip support is not enabled.
+ */
+ if (denali->total_used_banks != 1) {
+ dev_err(denali->dev,
+ "Sorry, Intel CE4100 only supports a single NAND device.\n");
+ BUG();
+ }
+ }
+ dev_dbg(denali->dev,
+ "denali->total_used_banks: %d\n", denali->total_used_banks);
+}
+
+/*
+ * Use the configuration feature register to determine the maximum number of
+ * banks that the hardware supports.
+ */
+static void detect_max_banks(struct denali_nand_info *denali)
+{
+ uint32_t features = ioread32(denali->flash_reg + FEATURES);
+
+ denali->max_banks = 2 << (features & FEATURES__N_BANKS);
+}
+
+static void detect_partition_feature(struct denali_nand_info *denali)
+{
+ /*
+ * For MRST platform, denali->fwblks represent the
+ * number of blocks firmware is taken,
+ * FW is in protect partition and MTD driver has no
+ * permission to access it. So let driver know how many
+ * blocks it can't touch.
+ */
+ if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
+ if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
+ PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
+ denali->fwblks =
+ ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
+ MIN_MAX_BANK__MIN_VALUE) *
+ denali->blksperchip)
+ +
+ (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
+ MIN_BLK_ADDR__VALUE);
+ } else {
+ denali->fwblks = SPECTRA_START_BLOCK;
+ }
+ } else {
+ denali->fwblks = SPECTRA_START_BLOCK;
+ }
+}
+
+static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
+{
+ uint16_t status = PASS;
+ uint32_t id_bytes[8], addr;
+ uint8_t maf_id, device_id;
+ int i;
+
+ dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ /*
+ * Use read id method to get device ID and other params.
+ * For some NAND chips, controller can't report the correct
+ * device ID by reading from DEVICE_ID register
+ */
+ addr = MODE_11 | BANK(denali->flash_bank);
+ index_addr(denali, addr | 0, 0x90);
+ index_addr(denali, addr | 1, 0);
+ for (i = 0; i < 8; i++)
+ index_addr_read_data(denali, addr | 2, &id_bytes[i]);
+ maf_id = id_bytes[0];
+ device_id = id_bytes[1];
+
+ if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
+ ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
+ if (FAIL == get_onfi_nand_para(denali))
+ return FAIL;
+ } else if (maf_id == 0xEC) { /* Samsung NAND */
+ get_samsung_nand_para(denali, device_id);
+ } else if (maf_id == 0x98) { /* Toshiba NAND */
+ get_toshiba_nand_para(denali);
+ } else if (maf_id == 0xAD) { /* Hynix NAND */
+ get_hynix_nand_para(denali, device_id);
+ }
+
+ dev_info(denali->dev,
+ "Dump timing register values:\n"
+ "acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
+ "we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
+ "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
+ ioread32(denali->flash_reg + ACC_CLKS),
+ ioread32(denali->flash_reg + RE_2_WE),
+ ioread32(denali->flash_reg + RE_2_RE),
+ ioread32(denali->flash_reg + WE_2_RE),
+ ioread32(denali->flash_reg + ADDR_2_DATA),
+ ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
+ ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
+ ioread32(denali->flash_reg + CS_SETUP_CNT));
+
+ find_valid_banks(denali);
+
+ detect_partition_feature(denali);
+
+ /*
+ * If the user specified to override the default timings
+ * with a specific ONFI mode, we apply those changes here.
+ */
+ if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
+ nand_onfi_timing_set(denali, onfi_timing_mode);
+
+ return status;
+}
+
+static void denali_set_intr_modes(struct denali_nand_info *denali,
+ uint16_t INT_ENABLE)
+{
+ dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
+ __FILE__, __LINE__, __func__);
+
+ if (INT_ENABLE)
+ iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
+ else
+ iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
+}
+
+/*
+ * validation function to verify that the controlling software is making
+ * a valid request
+ */
+static inline bool is_flash_bank_valid(int flash_bank)
+{
+ return flash_bank >= 0 && flash_bank < 4;
+}
+
+
+static void denali_irq_init(struct denali_nand_info *denali)
+{
+ uint32_t int_mask;
+ int i;
+
+ /* Disable global interrupts */
+ denali_set_intr_modes(denali, false);
+
+ int_mask = DENALI_IRQ_ALL;
+
+ /* Clear all status bits */
+ for (i = 0; i < denali->max_banks; ++i)
+ iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
+
+ denali_irq_enable(denali, int_mask);
+}
+
+
+static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
+{
+ denali_set_intr_modes(denali, false);
+}
+
+static void denali_irq_enable(struct denali_nand_info *denali,
+ uint32_t int_mask)
+{
+ int i;
+
+ for (i = 0; i < denali->max_banks; ++i)
+ iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
+}
+
+/* Interrupts are cleared by writing a 1 to the appropriate status bit */
+static inline void clear_interrupt(struct denali_nand_info *denali,
+ uint32_t irq_mask)
+{
+ uint32_t intr_status_reg;
+
+ intr_status_reg = INTR_STATUS(denali->flash_bank);
+
+ iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
+}
+
+static void clear_interrupts(struct denali_nand_info *denali)
+{
+ uint32_t status;
+
+ status = read_interrupt_status(denali);
+ clear_interrupt(denali, status);
+
+ denali->irq_status = 0x0;
+}
+
+static uint32_t read_interrupt_status(struct denali_nand_info *denali)
+{
+ uint32_t intr_status_reg;
+
+ intr_status_reg = INTR_STATUS(denali->flash_bank);
+
+ return ioread32(denali->flash_reg + intr_status_reg);
+}
+
+static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
+{
+ unsigned long comp_res = 1000;
+ uint32_t intr_status = 0;
+
+ do {
+ intr_status = read_interrupt_status(denali);
+ if (intr_status & irq_mask) {
+ /* our interrupt was detected */
+ break;
+ }
+ udelay(1);
+ comp_res--;
+ } while (comp_res != 0);
+
+ if (comp_res == 0) {
+ /* timeout */
+ intr_status = 0;
+ dev_dbg(denali->dev, "timeout occurred, status = 0x%x, mask = 0x%x\n",
+ intr_status, irq_mask);
+ }
+ return intr_status;
+}
+
+/*
+ * This helper function setups the registers for ECC and whether or not
+ * the spare area will be transferred.
+ */
+static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
+ bool transfer_spare)
+{
+ int ecc_en_flag, transfer_spare_flag;
+
+ /* set ECC, transfer spare bits if needed */
+ ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
+ transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
+
+ /* Enable spare area/ECC per user's request. */
+ iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
+ iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
+}
+
+/*
+ * sends a pipeline command operation to the controller. See the Denali NAND
+ * controller's user guide for more information (section 4.2.3.6).
+ */
+static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
+ bool ecc_en, bool transfer_spare,
+ int access_type, int op)
+{
+ int status = PASS;
+ uint32_t page_count = 1;
+ uint32_t addr, cmd, irq_status, irq_mask;
+
+ if (op == DENALI_READ)
+ irq_mask = INTR_STATUS__LOAD_COMP;
+ else if (op == DENALI_WRITE)
+ irq_mask = 0;
+ else
+ BUG();
+
+ setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
+
+ clear_interrupts(denali);
+
+ addr = BANK(denali->flash_bank) | denali->page;
+
+ if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
+ cmd = MODE_01 | addr;
+ iowrite32(cmd, denali->flash_mem);
+ } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
+ /* read spare area */
+ cmd = MODE_10 | addr;
+ index_addr(denali, cmd, access_type);
+
+ cmd = MODE_01 | addr;
+ iowrite32(cmd, denali->flash_mem);
+ } else if (op == DENALI_READ) {
+ /* setup page read request for access type */
+ cmd = MODE_10 | addr;
+ index_addr(denali, cmd, access_type);
+
+ /*
+ * page 33 of the NAND controller spec indicates we should not
+ * use the pipeline commands in Spare area only mode.
+ * So we don't.
+ */
+ if (access_type == SPARE_ACCESS) {
+ cmd = MODE_01 | addr;
+ iowrite32(cmd, denali->flash_mem);
+ } else {
+ index_addr(denali, cmd,
+ PIPELINE_ACCESS | op | page_count);
+
+ /*
+ * wait for command to be accepted
+ * can always use status0 bit as the
+ * mask is identical for each bank.
+ */
+ irq_status = wait_for_irq(denali, irq_mask);
+
+ if (irq_status == 0) {
+ dev_err(denali->dev,
+ "cmd, page, addr on timeout (0x%x, 0x%x, 0x%x)\n",
+ cmd, denali->page, addr);
+ status = FAIL;
+ } else {
+ cmd = MODE_01 | addr;
+ iowrite32(cmd, denali->flash_mem);
+ }
+ }
+ }
+ return status;
+}
+
+/* helper function that simply writes a buffer to the flash */
+static int write_data_to_flash_mem(struct denali_nand_info *denali,
+ const uint8_t *buf, int len)
+{
+ uint32_t *buf32;
+ int i;
+
+ /*
+ * verify that the len is a multiple of 4.
+ * see comment in read_data_from_flash_mem()
+ */
+ BUG_ON((len % 4) != 0);
+
+ /* write the data to the flash memory */
+ buf32 = (uint32_t *)buf;
+ for (i = 0; i < len / 4; i++)
+ iowrite32(*buf32++, denali->flash_mem + 0x10);
+ return i * 4; /* intent is to return the number of bytes read */
+}
+
+/* helper function that simply reads a buffer from the flash */
+static int read_data_from_flash_mem(struct denali_nand_info *denali,
+ uint8_t *buf, int len)
+{
+ uint32_t *buf32;
+ int i;
+
+ /*
+ * we assume that len will be a multiple of 4, if not it would be nice
+ * to know about it ASAP rather than have random failures...
+ * This assumption is based on the fact that this function is designed
+ * to be used to read flash pages, which are typically multiples of 4.
+ */
+ BUG_ON((len % 4) != 0);
+
+ /* transfer the data from the flash */
+ buf32 = (uint32_t *)buf;
+ for (i = 0; i < len / 4; i++)
+ *buf32++ = ioread32(denali->flash_mem + 0x10);
+ return i * 4; /* intent is to return the number of bytes read */
+}
+
+/* writes OOB data to the device */
+static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
+{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+ uint32_t irq_status;
+ uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
+ INTR_STATUS__PROGRAM_FAIL;
+ int status = 0;
+
+ denali->page = page;
+
+ if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
+ DENALI_WRITE) == PASS) {
+ write_data_to_flash_mem(denali, buf, mtd->oobsize);
+
+ /* wait for operation to complete */
+ irq_status = wait_for_irq(denali, irq_mask);
+
+ if (irq_status == 0) {
+ dev_err(denali->dev, "OOB write failed\n");
+ status = -EIO;
+ }
+
+ /* set the device back to MAIN_ACCESS */
+ {
+ uint32_t addr;
+ uint32_t cmd;
+ addr = BANK(denali->flash_bank) | denali->page;
+ cmd = MODE_10 | addr;
+ index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
+ }
+
+ } else {
+ dev_err(denali->dev, "unable to send pipeline command\n");
+ status = -EIO;
+ }
+ return status;
+}
+
+/* reads OOB data from the device */
+static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
+{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+ uint32_t irq_mask = INTR_STATUS__LOAD_COMP;
+ uint32_t irq_status, addr, cmd;
+
+ denali->page = page;
+
+ if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
+ DENALI_READ) == PASS) {
+ read_data_from_flash_mem(denali, buf, mtd->oobsize);
+
+ /*
+ * wait for command to be accepted
+ * can always use status0 bit as the
+ * mask is identical for each bank.
+ */
+ irq_status = wait_for_irq(denali, irq_mask);
+
+ if (irq_status == 0)
+ dev_err(denali->dev, "page on OOB timeout %d\n",
+ denali->page);
+
+ /*
+ * We set the device back to MAIN_ACCESS here as I observed
+ * instability with the controller if you do a block erase
+ * and the last transaction was a SPARE_ACCESS. Block erase
+ * is reliable (according to the MTD test infrastructure)
+ * if you are in MAIN_ACCESS.
+ */
+ addr = BANK(denali->flash_bank) | denali->page;
+ cmd = MODE_10 | addr;
+ index_addr(denali, cmd, MAIN_ACCESS);
+ }
+}
+
+/*
+ * this function examines buffers to see if they contain data that
+ * indicate that the buffer is part of an erased region of flash.
+ */
+static bool is_erased(uint8_t *buf, int len)
+{
+ int i;
+
+ for (i = 0; i < len; i++)
+ if (buf[i] != 0xFF)
+ return false;
+ return true;
+}
+#define ECC_SECTOR_SIZE 512
+
+#define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
+#define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
+#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
+#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
+#define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
+#define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
+
+static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
+ uint32_t irq_status, unsigned int *max_bitflips)
+{
+ bool check_erased_page = false;
+ unsigned int bitflips = 0;
+
+ if (denali->have_hw_ecc_fixup &&
+ (irq_status & INTR_STATUS__ECC_UNCOR_ERR)) {
+ clear_interrupts(denali);
+ denali_set_intr_modes(denali, true);
+ check_erased_page = true;
+ } else if (irq_status & INTR_STATUS__ECC_ERR) {
+ /* read the ECC errors. we'll ignore them for now */
+ uint32_t err_address, err_correction_info, err_byte,
+ err_sector, err_device, err_correction_value;
+ denali_set_intr_modes(denali, false);
+
+ do {
+ err_address = ioread32(denali->flash_reg +
+ ECC_ERROR_ADDRESS);
+ err_sector = ECC_SECTOR(err_address);
+ err_byte = ECC_BYTE(err_address);
+
+ err_correction_info = ioread32(denali->flash_reg +
+ ERR_CORRECTION_INFO);
+ err_correction_value =
+ ECC_CORRECTION_VALUE(err_correction_info);
+ err_device = ECC_ERR_DEVICE(err_correction_info);
+
+ if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
+ /*
+ * If err_byte is larger than ECC_SECTOR_SIZE,
+ * means error happened in OOB, so we ignore
+ * it. It's no need for us to correct it
+ * err_device is represented the NAND error
+ * bits are happened in if there are more
+ * than one NAND connected.
+ */
+ if (err_byte < ECC_SECTOR_SIZE) {
+ int offset;
+
+ offset = (err_sector *
+ ECC_SECTOR_SIZE +
+ err_byte) *
+ denali->devnum +
+ err_device;
+ /* correct the ECC error */
+ buf[offset] ^= err_correction_value;
+ denali->mtd.ecc_stats.corrected++;
+ bitflips++;
+ }
+ } else {
+ /*
+ * if the error is not correctable, need to
+ * look at the page to see if it is an erased
+ * page. if so, then it's not a real ECC error
+ */
+ check_erased_page = true;
+ }
+ } while (!ECC_LAST_ERR(err_correction_info));
+ /*
+ * Once handle all ecc errors, controller will trigger
+ * a ECC_TRANSACTION_DONE interrupt, so here just wait
+ * for a while for this interrupt
+ */
+ while (!(read_interrupt_status(denali) &
+ INTR_STATUS__ECC_TRANSACTION_DONE))
+ /* cpu_relax(); */
+ barrier();
+ clear_interrupts(denali);
+ denali_set_intr_modes(denali, true);
+ }
+ *max_bitflips = bitflips;
+ return check_erased_page;
+}
+
+/* programs the controller to either enable/disable DMA transfers */
+static void denali_enable_dma(struct denali_nand_info *denali, bool en)
+{
+ iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
+ ioread32(denali->flash_reg + DMA_ENABLE);
+}
+
+/* setups the HW to perform the data DMA */
+static void denali_setup_dma(struct denali_nand_info *denali, int op)
+{
+ uint32_t mode;
+ const int page_count = 1;
+ uint32_t addr = (unsigned long)denali->buf.buf;
+
+ mode = MODE_10 | BANK(denali->flash_bank);
+
+ /* DMA is a four step process */
+
+ /* 1. setup transfer type and # of pages */
+ index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
+
+ /* 2. set memory high address bits 23:8 */
+ index_addr(denali, mode | ((addr >> 16) << 8), 0x2200);
+
+ /* 3. set memory low address bits 23:8 */
+ index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300);
+
+ /* 4. interrupt when complete, burst len = 64 bytes */
+ index_addr(denali, mode | 0x14000, 0x2400);
+}
+
+/*
+ * writes a page. user specifies type, and this function handles the
+ * configuration details.
+ */
+static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
+ const uint8_t *buf, bool raw_xfer)
+{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+ dma_addr_t addr = (unsigned long)denali->buf.buf;
+ size_t size = denali->mtd.writesize + denali->mtd.oobsize;
+ uint32_t irq_status;
+ uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
+ INTR_STATUS__PROGRAM_FAIL;
+
+ /*
+ * if it is a raw xfer, we want to disable ecc and send the spare area.
+ * !raw_xfer - enable ecc
+ * raw_xfer - transfer spare
+ */
+ setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
+
+ /* copy buffer into DMA buffer */
+ memcpy(denali->buf.buf, buf, mtd->writesize);
+
+ if (raw_xfer) {
+ /* transfer the data to the spare area */
+ memcpy(denali->buf.buf + mtd->writesize,
+ chip->oob_poi,
+ mtd->oobsize);
+ }
+
+ dma_sync_single_for_device(addr, size, DMA_TO_DEVICE);
+
+ clear_interrupts(denali);
+ denali_enable_dma(denali, true);
+
+ denali_setup_dma(denali, DENALI_WRITE);
+
+ /* wait for operation to complete */
+ irq_status = wait_for_irq(denali, irq_mask);
+
+ if (irq_status == 0) {
+ dev_err(denali->dev, "timeout on write_page (type = %d)\n",
+ raw_xfer);
+ denali->status = NAND_STATUS_FAIL;
+ }
+
+ denali_enable_dma(denali, false);
+ dma_sync_single_for_cpu(addr, size, DMA_TO_DEVICE);
+
+ return 0;
+}
+
+/* NAND core entry points */
+
+/*
+ * this is the callback that the NAND core calls to write a page. Since
+ * writing a page with ECC or without is similar, all the work is done
+ * by write_page above.
+ */
+static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+ const uint8_t *buf, int oob_required)
+{
+ /*
+ * for regular page writes, we let HW handle all the ECC
+ * data written to the device.
+ */
+ return write_page(mtd, chip, buf, false);
+}
+
+/*
+ * This is the callback that the NAND core calls to write a page without ECC.
+ * raw access is similar to ECC page writes, so all the work is done in the
+ * write_page() function above.
+ */
+static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+ const uint8_t *buf, int oob_required)
+{
+ /*
+ * for raw page writes, we want to disable ECC and simply write
+ * whatever data is in the buffer.
+ */
+ return write_page(mtd, chip, buf, true);
+}
+
+static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ return write_oob_data(mtd, chip->oob_poi, page);
+}
+
+static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ read_oob_data(mtd, chip->oob_poi, page);
+
+ return 0;
+}
+
+static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf, int oob_required, int page)
+{
+ unsigned int max_bitflips = 0;
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+ dma_addr_t addr = (unsigned long)denali->buf.buf;
+ size_t size = denali->mtd.writesize + denali->mtd.oobsize;
+
+ uint32_t irq_status;
+ uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
+ INTR_STATUS__ECC_ERR;
+ bool check_erased_page = false;
+
+ if (page != denali->page) {
+ dev_err(denali->dev,
+ "IN %s: page %d is not equal to denali->page %d",
+ __func__, page, denali->page);
+ BUG();
+ }
+
+ setup_ecc_for_xfer(denali, true, false);
+
+ denali_enable_dma(denali, true);
+ dma_sync_single_for_device(addr, size, DMA_FROM_DEVICE);
+
+ clear_interrupts(denali);
+ denali_setup_dma(denali, DENALI_READ);
+
+ /* wait for operation to complete */
+ irq_status = wait_for_irq(denali, irq_mask);
+
+ dma_sync_single_for_cpu(addr, size, DMA_FROM_DEVICE);
+
+ memcpy(buf, denali->buf.buf, mtd->writesize);
+
+ check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
+ denali_enable_dma(denali, false);
+
+ if (check_erased_page) {
+ if (denali->have_hw_ecc_fixup) {
+ /* When we have hw ecc fixup, don't check oob.
+ * That code below looks jacked up anyway. I mean,
+ * look at it, wtf? */
+ if (!is_erased(buf, denali->mtd.writesize))
+ denali->mtd.ecc_stats.failed++;
+ } else {
+ read_oob_data(&denali->mtd, chip->oob_poi,
+ denali->page);
+
+ /* check ECC failures that may have occurred on
+ * erased pages */
+ if (check_erased_page) {
+ if (!is_erased(buf, denali->mtd.writesize))
+ denali->mtd.ecc_stats.failed++;
+ if (!is_erased(buf, denali->mtd.oobsize))
+ denali->mtd.ecc_stats.failed++;
+ }
+ }
+ }
+ return max_bitflips;
+}
+
+static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf, int oob_required, int page)
+{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+ dma_addr_t addr = (unsigned long)denali->buf.buf;
+ size_t size = denali->mtd.writesize + denali->mtd.oobsize;
+ uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
+
+ if (page != denali->page) {
+ dev_err(denali->dev,
+ "IN %s: page %d is not equal to denali->page %d",
+ __func__, page, denali->page);
+ BUG();
+ }
+
+ setup_ecc_for_xfer(denali, false, true);
+ denali_enable_dma(denali, true);
+
+ dma_sync_single_for_device(addr, size, DMA_FROM_DEVICE);
+
+ clear_interrupts(denali);
+ denali_setup_dma(denali, DENALI_READ);
+
+ /* wait for operation to complete */
+ wait_for_irq(denali, irq_mask);
+
+ dma_sync_single_for_cpu(addr, size, DMA_FROM_DEVICE);
+
+ denali_enable_dma(denali, false);
+
+ memcpy(buf, denali->buf.buf, mtd->writesize);
+ memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
+
+ return 0;
+}
+
+static uint8_t denali_read_byte(struct mtd_info *mtd)
+{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+ uint8_t result = 0xff;
+
+ if (denali->buf.head < denali->buf.tail)
+ result = denali->buf.buf[denali->buf.head++];
+
+ return result;
+}
+
+static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+ int i;
+ for (i = 0; i < len; i++)
+ buf[i] = denali_read_byte(mtd);
+}
+
+static void denali_select_chip(struct mtd_info *mtd, int chip)
+{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+ denali->flash_bank = chip;
+}
+
+static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
+{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+ int status = denali->status;
+
+ denali->status = 0;
+
+ return status;
+}
+
+static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
+ int page)
+{
+ struct denali_nand_info *denali = mtd_to_denali(mtd);
+ uint32_t addr, id;
+ uint32_t pages_per_block;
+ uint32_t block;
+ int i;
+
+ switch (cmd) {
+ case NAND_CMD_PAGEPROG:
+ break;
+ case NAND_CMD_STATUS:
+ read_status(denali);
+ break;
+ case NAND_CMD_READID:
+ reset_buf(denali);
+ /*
+ * sometimes ManufactureId read from register is not right
+ * e.g. some of Micron MT29F32G08QAA MLC NAND chips
+ * So here we send READID cmd to NAND insteand
+ */
+ addr = MODE_11 | BANK(denali->flash_bank);
+ index_addr(denali, addr | 0, 0x90);
+ index_addr(denali, addr | 1, 0);
+ for (i = 0; i < 8; i++) {
+ index_addr_read_data(denali, addr | 2, &id);
+ write_byte_to_buf(denali, id);
+ }
+ break;
+ case NAND_CMD_PARAM:
+ reset_buf(denali);
+
+ /* turn on R/B interrupt */
+ denali_set_intr_modes(denali, false);
+ denali_irq_mask = DENALI_IRQ_ALL | INTR_STATUS__INT_ACT;
+ clear_interrupts(denali);
+ denali_irq_enable(denali, denali_irq_mask);
+ denali_set_intr_modes(denali, true);
+
+ addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
+ index_addr(denali, (uint32_t)addr | 0, cmd);
+ index_addr(denali, (uint32_t)addr | 1, col & 0xFF);
+ /* Wait tR time... */
+ udelay(25);
+ /* And then wait for R/B interrupt */
+ wait_for_irq(denali, INTR_STATUS__INT_ACT);
+
+ /* turn off R/B interrupt now */
+ denali_irq_mask = DENALI_IRQ_ALL;
+ denali_set_intr_modes(denali, false);
+ denali_irq_enable(denali, denali_irq_mask);
+ denali_set_intr_modes(denali, true);
+
+ for (i = 0; i < 256; i++) {
+ index_addr_read_data(denali,
+ (uint32_t)addr | 2,
+ &id);
+ write_byte_to_buf(denali, id);
+ }
+ break;
+ case NAND_CMD_READ0:
+ case NAND_CMD_SEQIN:
+ denali->page = page;
+ break;
+ case NAND_CMD_RESET:
+ reset_bank(denali);
+ break;
+ case NAND_CMD_READOOB:
+ /* TODO: Read OOB data */
+ break;
+ case NAND_CMD_UNLOCK1:
+ pages_per_block = mtd->erasesize / mtd->writesize;
+ block = page / pages_per_block;
+ addr = (uint32_t)MODE_10 | (block * pages_per_block);
+ index_addr(denali, addr, 0x10);
+ break;
+ case NAND_CMD_UNLOCK2:
+ pages_per_block = mtd->erasesize / mtd->writesize;
+ block = (page+pages_per_block-1) / pages_per_block;
+ addr = (uint32_t)MODE_10 | (block * pages_per_block);
+ index_addr(denali, addr, 0x11);
+ break;
+ case NAND_CMD_ERASE1:
+ case NAND_CMD_ERASE2:
+ addr = MODE_10 | BANK(denali->flash_bank) | page;
+ index_addr(denali, addr, 0x1);
+ break;
+ default:
+ pr_err(": unsupported command received 0x%x\n", cmd);
+ break;
+ }
+}
+/* end NAND core entry points */
+
+/* Initialization code to bring the device up to a known good state */
+static void denali_hw_init(struct denali_nand_info *denali)
+{
+ /*
+ * tell driver how many bit controller will skip before
+ * writing ECC code in OOB, this register may be already
+ * set by firmware. So we read this value out.
+ * if this value is 0, just let it be.
+ */
+ denali->bbtskipbytes = ioread32(denali->flash_reg +
+ SPARE_AREA_SKIP_BYTES);
+ detect_max_banks(denali);
+ denali_nand_reset(denali);
+ iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
+ iowrite32(CHIP_EN_DONT_CARE__FLAG,
+ denali->flash_reg + CHIP_ENABLE_DONT_CARE);
+
+ iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
+
+ /* Should set value for these registers when init */
+ iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
+ iowrite32(1, denali->flash_reg + ECC_ENABLE);
+ denali_nand_timing_set(denali);
+ denali_irq_init(denali);
+}
+
+/*
+ * Althogh controller spec said SLC ECC is forceb to be 4bit,
+ * but denali controller in MRST only support 15bit and 8bit ECC
+ * correction
+ */
+#define ECC_8BITS 14
+static struct nand_ecclayout nand_8bit_oob = {
+ .eccbytes = 14,
+};
+
+#define ECC_15BITS 26
+static struct nand_ecclayout nand_15bit_oob = {
+ .eccbytes = 26,
+};
+
+/* initialize driver data structures */
+static void denali_drv_init(struct denali_nand_info *denali)
+{
+ denali->idx = 0;
+
+ /* indicate that MTD has not selected a valid bank yet */
+ denali->flash_bank = CHIP_SELECT_INVALID;
+
+ /* initialize our irq_status variable to indicate no interrupts */
+ denali->irq_status = 0;
+}
+
+int denali_init(struct denali_nand_info *denali)
+{
+ int ret = 0;
+ uint32_t val;
+
+ if (denali->platform == INTEL_CE4100) {
+ /*
+ * Due to a silicon limitation, we can only support
+ * ONFI timing mode 1 and below.
+ */
+ if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
+ pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
+ return -EINVAL;
+ }
+ }
+
+ /* allocate a temporary buffer for nand_scan_ident() */
+ denali->buf.buf = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
+ if (!denali->buf.buf)
+ return -ENOMEM;
+
+ denali->mtd.parent = denali->dev;
+ denali_hw_init(denali);
+ denali_drv_init(denali);
+
+ denali_set_intr_modes(denali, true);
+ denali->mtd.name = "denali-nand";
+ denali->mtd.priv = &denali->nand;
+
+ /* register the driver with the NAND core subsystem */
+ denali->nand.read_buf = denali_read_buf;
+ denali->nand.select_chip = denali_select_chip;
+ denali->nand.cmdfunc = denali_cmdfunc;
+ denali->nand.read_byte = denali_read_byte;
+ denali->nand.waitfunc = denali_waitfunc;
+
+ /*
+ * scan for NAND devices attached to the controller
+ * this is the first stage in a two step process to register
+ * with the nand subsystem
+ */
+ if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) {
+ ret = -ENXIO;
+ goto failed_req_irq;
+ }
+
+ /* allocate the right size buffer now */
+ kfree(denali->buf.buf);
+ denali->buf.buf = kzalloc(denali->mtd.writesize + denali->mtd.oobsize,
+ GFP_KERNEL);
+ if (!denali->buf.buf) {
+ ret = -ENOMEM;
+ goto failed_req_irq;
+ }
+
+ /*
+ * support for multi nand
+ * MTD known nothing about multi nand, so we should tell it
+ * the real pagesize and anything necessery
+ */
+ denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
+ denali->nand.chipsize <<= (denali->devnum - 1);
+ denali->nand.page_shift += (denali->devnum - 1);
+ denali->nand.pagemask = (denali->nand.chipsize >>
+ denali->nand.page_shift) - 1;
+ denali->nand.bbt_erase_shift += (denali->devnum - 1);
+ denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
+ denali->nand.chip_shift += (denali->devnum - 1);
+ denali->mtd.writesize <<= (denali->devnum - 1);
+ denali->mtd.oobsize <<= (denali->devnum - 1);
+ denali->mtd.erasesize <<= (denali->devnum - 1);
+ denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
+ denali->bbtskipbytes *= denali->devnum;
+
+ /*
+ * second stage of the NAND scan
+ * this stage requires information regarding ECC and
+ * bad block management.
+ */
+
+ /* Bad block table description is set by nand framework,
+ see nand_bbt.c */
+
+ denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
+ denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
+ if (denali->have_hw_ecc_fixup) {
+ /* We have OOB support, so allow scan of BBT
+ and leave the OOB alone */
+ denali->nand.bbt_options |= NAND_BBT_NO_OOB;
+ } else {
+ /* skip the scan for now until we have OOB read and write support */
+ denali->nand.options |= NAND_SKIP_BBTSCAN;
+ }
+
+ /* no subpage writes on denali */
+ denali->nand.options |= NAND_NO_SUBPAGE_WRITE;
+
+ /*
+ * Denali Controller only support 15bit and 8bit ECC in MRST,
+ * so just let controller do 15bit ECC for MLC and 8bit ECC for
+ * SLC if possible.
+ * */
+ if (!nand_is_slc(&denali->nand) &&
+ (denali->mtd.oobsize > (denali->bbtskipbytes +
+ ECC_15BITS * (denali->mtd.writesize /
+ ECC_SECTOR_SIZE)))) {
+ /* if MLC OOB size is large enough, use 15bit ECC*/
+ denali->nand.ecc.strength = 15;
+ denali->nand.ecc.layout = &nand_15bit_oob;
+ denali->nand.ecc.bytes = ECC_15BITS;
+ iowrite32(15, denali->flash_reg + ECC_CORRECTION);
+ } else if (denali->mtd.oobsize < (denali->bbtskipbytes +
+ ECC_8BITS * (denali->mtd.writesize /
+ ECC_SECTOR_SIZE))) {
+ pr_err("Your NAND chip OOB is not large enough to contain 8bit ECC correction codes");
+ goto failed_req_irq;
+ } else {
+ denali->nand.ecc.strength = 8;
+ denali->nand.ecc.layout = &nand_8bit_oob;
+ denali->nand.ecc.bytes = ECC_8BITS;
+ iowrite32(8, denali->flash_reg + ECC_CORRECTION);
+ }
+
+ denali->nand.ecc.bytes *= denali->devnum;
+ denali->nand.ecc.strength *= denali->devnum;
+ denali->nand.ecc.layout->eccbytes *=
+ denali->mtd.writesize / ECC_SECTOR_SIZE;
+ denali->nand.ecc.layout->oobfree[0].offset =
+ denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
+ denali->nand.ecc.layout->oobfree[0].length =
+ denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
+ denali->bbtskipbytes;
+
+ /*
+ * Let driver know the total blocks number and how many blocks
+ * contained by each nand chip. blksperchip will help driver to
+ * know how many blocks is taken by FW.
+ */
+ denali->totalblks = denali->mtd.size >> denali->nand.phys_erase_shift;
+ denali->blksperchip = denali->totalblks / denali->nand.numchips;
+
+ /* override the default read operations */
+ denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
+ denali->nand.ecc.read_page = denali_read_page;
+ denali->nand.ecc.read_page_raw = denali_read_page_raw;
+ denali->nand.ecc.write_page = denali_write_page;
+ denali->nand.ecc.write_page_raw = denali_write_page_raw;
+ denali->nand.ecc.read_oob = denali_read_oob;
+ denali->nand.ecc.write_oob = denali_write_oob;
+
+ /* Occasionally the controller is in SPARE or MAIN+SPARE
+ mode upon startup, and we want it to be MAIN only */
+ val = ioread32(denali->flash_reg + TRANSFER_MODE);
+ if (val != 0) {
+ int i;
+ dev_dbg(denali->dev,
+ "setting TRANSFER_MODE (%08x) back to MAIN only\n", val);
+ /* put all banks in MAIN mode, no SPARE */
+ iowrite32(0, denali->flash_reg + TRANSFER_SPARE_REG);
+ for (i = 0; i < 4; i++)
+ index_addr(denali, MODE_10 | BANK(i) | 1,
+ MAIN_ACCESS);
+ }
+
+ if (nand_scan_tail(&denali->mtd)) {
+ ret = -ENXIO;
+ goto failed_req_irq;
+ }
+
+ return add_mtd_nand_device(&denali->mtd, "nand");
+
+failed_req_irq:
+ denali_irq_cleanup(denali->irq, denali);
+
+ return ret;
+}
+EXPORT_SYMBOL(denali_init);
+
+
+MODULE_AUTHOR("Intel Corporation");
+MODULE_DESCRIPTION("");
+MODULE_LICENSE("GPL");
diff --git a/drivers/mtd/nand/nand_denali_dt.c b/drivers/mtd/nand/nand_denali_dt.c
new file mode 100644
index 0000000..09eb110
--- /dev/null
+++ b/drivers/mtd/nand/nand_denali_dt.c
@@ -0,0 +1,101 @@
+/*
+ * NAND Flash Controller Device Driver for DT
+ *
+ * Copyright © 2011, Picochip.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ */
+
+#include <common.h>
+#include <driver.h>
+#include <malloc.h>
+#include <init.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <mach/generic.h>
+#include <io.h>
+#include <of_mtd.h>
+#include <errno.h>
+
+#include <linux/clk.h>
+
+
+#include "denali.h"
+
+struct denali_dt {
+ struct denali_nand_info denali;
+ struct clk *clk;
+};
+
+
+static int denali_dt_probe(struct device_d *ofdev)
+{
+ struct denali_dt *dt;
+ struct denali_nand_info *denali;
+ int ret;
+
+ if (!IS_ENABLED(CONFIG_OFDEVICE))
+ return 1;
+
+ dt = kzalloc(sizeof(*dt), GFP_KERNEL);
+ if (!dt)
+ return -ENOMEM;
+ denali = &dt->denali;
+
+ denali->platform = DT;
+ denali->dev = ofdev;
+
+ denali->flash_mem = dev_request_mem_region(ofdev, 0);
+ if (IS_ERR(denali->flash_mem))
+ return PTR_ERR(denali->flash_mem);
+ denali->flash_reg = dev_request_mem_region(ofdev, 1);
+ if (IS_ERR(denali->flash_reg))
+ return PTR_ERR(denali->flash_reg);
+
+ dt->clk = clk_get(ofdev, NULL);
+ if (IS_ERR(dt->clk)) {
+ dev_err(ofdev, "no clk available\n");
+ return PTR_ERR(dt->clk);
+ }
+ clk_enable(dt->clk);
+
+ denali->have_hw_ecc_fixup = of_property_read_bool(ofdev->device_node,
+ "have-hw-ecc-fixup");
+
+ ret = denali_init(denali);
+ if (ret)
+ goto out_disable_clk;
+
+ return 0;
+
+out_disable_clk:
+ clk_disable(dt->clk);
+
+ return ret;
+}
+
+static __maybe_unused struct of_device_id denali_nand_compatible[] = {
+ {
+ .compatible = "denali,denali-nand-dt"
+ }, {
+ /* sentinel */
+ }
+};
+
+static struct driver_d denali_dt_driver = {
+ .name = "denali-nand-dt",
+ .probe = denali_dt_probe,
+ .of_compatible = DRV_OF_COMPAT(denali_nand_compatible)
+};
+device_platform_driver(denali_dt_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Jamie Iles");
+MODULE_DESCRIPTION("DT driver for Denali NAND controller");
--
2.5.1
_______________________________________________
barebox mailing list
barebox@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/barebox
next prev parent reply other threads:[~2015-09-21 14:06 UTC|newest]
Thread overview: 6+ messages / expand[flat|nested] mbox.gz Atom feed top
2015-09-21 14:04 [PATCH 0/4] New denali nand driver (ported from kernel) Enrico Jorns
2015-09-21 14:04 ` [PATCH 1/4] mtd nand: added 'bits_per_cell' property Enrico Jorns
2015-09-21 14:04 ` Enrico Jorns [this message]
2015-09-21 14:04 ` [PATCH 3/4] mtd denali: pass col argument to READID operation Enrico Jorns
2015-09-21 14:04 ` [PATCH 4/4] socfpga dts: set have-hw-ecc-fixup for nand Enrico Jorns
2015-09-23 8:36 ` [PATCH 0/4] New denali nand driver (ported from kernel) Sascha Hauer
Reply instructions:
You may reply publicly to this message via plain-text email
using any one of the following methods:
* Save the following mbox file, import it into your mail client,
and reply-to-all from there: mbox
Avoid top-posting and favor interleaved quoting:
https://en.wikipedia.org/wiki/Posting_style#Interleaved_style
* Reply using the --to, --cc, and --in-reply-to
switches of git-send-email(1):
git send-email \
--in-reply-to=1442844284-27870-3-git-send-email-ejo@pengutronix.de \
--to=ejo@pengutronix.de \
--cc=barebox@lists.infradead.org \
/path/to/YOUR_REPLY
https://kernel.org/pub/software/scm/git/docs/git-send-email.html
* If your mail client supports setting the In-Reply-To header
via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line
before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox