From: Antony Pavlov <antonynpavlov@gmail.com>
To: Jan Luebbe <jluebbe@debian.org>
Cc: barebox@lists.infradead.org
Subject: Re: [PATCH] davinci_nand: add support for the NAND controller
Date: Sun, 31 May 2015 16:58:01 +0300 [thread overview]
Message-ID: <20150531165801.1239a325f2bcba1c1bafc874@gmail.com> (raw)
In-Reply-To: <1432991051-20800-1-git-send-email-jluebbe@debian.org>
On Sat, 30 May 2015 15:04:11 +0200
Jan Luebbe <jluebbe@debian.org> wrote:
> This driver is based on the Linux driver (v4.0).
checkpatch.pl output:
total: 15 errors, 9 warnings, 884 lines checked
NOTE: whitespace errors detected, you may wish to use scripts/cleanpatch or
scripts/cleanfile
Please fix the patch!
> Signed-off-by: Jan Luebbe <jluebbe@debian.org>
> ---
> drivers/mtd/nand/Kconfig | 7 +
> drivers/mtd/nand/Makefile | 1 +
> drivers/mtd/nand/davinci_nand.c | 866 ++++++++++++++++++++++++++++++++++++++++
> 3 files changed, 874 insertions(+)
> create mode 100644 drivers/mtd/nand/davinci_nand.c
>
> diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
> index a75540b..41a3e31 100644
> --- a/drivers/mtd/nand/Kconfig
> +++ b/drivers/mtd/nand/Kconfig
> @@ -140,4 +140,11 @@ config MTD_NAND_NOMADIK
> help
> Driver for the NAND flash controller on the Nomadik, with ECC.
>
> +config MTD_NAND_DAVINCI
> + tristate "Support NAND on DaVinci"
> + depends on ARCH_DAVINCI
> + help
> + Enable the driver for NAND flash chips on Texas Instruments
> + DaVinci processors.
> +
> endif
> diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
> index a0b3198..b8644b2 100644
> --- a/drivers/mtd/nand/Makefile
> +++ b/drivers/mtd/nand/Makefile
> @@ -7,6 +7,7 @@ obj-$(CONFIG_NAND) += nand_base.o nand-bb.o
> obj-$(CONFIG_NAND_BBT) += nand_bbt.o
>
> obj-$(CONFIG_MTD_NAND_NOMADIK) += nomadik_nand.o
> +obj-$(CONFIG_MTD_NAND_DAVINCI) += davinci_nand.o
> obj-$(CONFIG_NAND_IMX) += nand_imx.o
> obj-$(CONFIG_NAND_IMX_BBM) += nand_imx_bbm.o
> obj-$(CONFIG_NAND_OMAP_GPMC) += nand_omap_gpmc.o nand_omap_bch_decoder.o
> diff --git a/drivers/mtd/nand/davinci_nand.c b/drivers/mtd/nand/davinci_nand.c
> new file mode 100644
> index 0000000..4b14b6c
> --- /dev/null
> +++ b/drivers/mtd/nand/davinci_nand.c
> @@ -0,0 +1,866 @@
> +/*
> + * davinci_nand.c - NAND Flash Driver for DaVinci family chips
> + *
> + * Copyright © 2006 Texas Instruments.
> + *
> + * Port to 2.6.23 Copyright © 2008 by:
> + * Sander Huijsen <Shuijsen@optelecom-nkf.com>
> + * Troy Kisky <troy.kisky@boundarydevices.com>
> + * Dirk Behme <Dirk.Behme@gmail.com>
> + *
> + * This program is free software; you can redistribute it and/or modify
> + * it under the terms of the GNU General Public License as published by
> + * the Free Software Foundation; either version 2 of the License, or
> + * (at your option) any later version.
> + *
> + * This program is distributed in the hope that it will be useful,
> + * but WITHOUT ANY WARRANTY; without even the implied warranty of
> + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
> + * GNU General Public License for more details.
> + *
> + * You should have received a copy of the GNU General Public License
> + * along with this program; if not, write to the Free Software
> + * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
> + */
> +
> +//#define DEBUG
> +
> +#include <common.h>
> +#include <io.h>
> +#include <malloc.h>
> +#include <driver.h>
> +#include <init.h>
> +#include <clock.h>
> +
> +#include <of.h>
> +#include <of_mtd.h>
> +
> +#include <linux/kernel.h>
> +#include <linux/err.h>
> +#include <linux/clk.h>
> +#include <linux/mtd/nand.h>
> +
> +#define NANDFCR_OFFSET 0x60
> +#define NANDFSR_OFFSET 0x64
> +#define NANDF1ECC_OFFSET 0x70
> +
> +/* 4-bit ECC syndrome registers */
> +#define NAND_4BIT_ECC_LOAD_OFFSET 0xbc
> +#define NAND_4BIT_ECC1_OFFSET 0xc0
> +#define NAND_4BIT_ECC2_OFFSET 0xc4
> +#define NAND_4BIT_ECC3_OFFSET 0xc8
> +#define NAND_4BIT_ECC4_OFFSET 0xcc
> +#define NAND_ERR_ADD1_OFFSET 0xd0
> +#define NAND_ERR_ADD2_OFFSET 0xd4
> +#define NAND_ERR_ERRVAL1_OFFSET 0xd8
> +#define NAND_ERR_ERRVAL2_OFFSET 0xdc
> +
> +/* NOTE: boards don't need to use these address bits
> + * for ALE/CLE unless they support booting from NAND.
> + * They're used unless platform data overrides them.
> + */
> +#define MASK_ALE 0x08
> +#define MASK_CLE 0x10
> +
> +struct davinci_nand_pdata { /* platform_data */
> + uint32_t chipsel;
> +
> + uint32_t mask_ale;
> + uint32_t mask_cle;
> +
> + /* for packages using two chipselects */
> + uint32_t mask_chipsel;
> +
> + /* board's default static partition info */
> + struct mtd_partition *parts;
> + unsigned nr_parts;
> +
> + /* none == NAND_ECC_NONE (strongly *not* advised!!)
> + * soft == NAND_ECC_SOFT
> + * else == NAND_ECC_HW, according to ecc_bits
> + *
> + * All DaVinci-family chips support 1-bit hardware ECC.
> + * Newer ones also support 4-bit ECC, but are awkward
> + * using it with large page chips.
> + */
> + nand_ecc_modes_t ecc_mode;
> + u8 ecc_bits;
> +
> + /* e.g. NAND_BUSWIDTH_16 */
> + unsigned options;
> + /* e.g. NAND_BBT_USE_FLASH */
> + unsigned bbt_options;
> +
> + /* Main and mirror bbt descriptor overrides */
> + struct nand_bbt_descr *bbt_td;
> + struct nand_bbt_descr *bbt_md;
> +
> + /* Access timings */
> + //struct davinci_aemif_timing *timing;
> +};
> +
> +#define NRCSR_OFFSET 0x00
> +#define AWCCR_OFFSET 0x04
> +#define A1CR_OFFSET 0x10
> +
> +#define ACR_ASIZE_MASK 0x3
> +#define ACR_EW_MASK BIT(30)
> +#define ACR_SS_MASK BIT(31)
> +
> +/*
> + * This is a device driver for the NAND flash controller found on the
> + * various DaVinci family chips. It handles up to four SoC chipselects,
> + * and some flavors of secondary chipselect (e.g. based on A12) as used
> + * with multichip packages.
> + *
> + * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
> + * available on chips like the DM355 and OMAP-L137 and needed with the
> + * more error-prone MLC NAND chips.
> + *
> + * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
> + * outputs in a "wire-AND" configuration, with no per-chip signals.
> + */
> +struct davinci_nand_info {
> + struct mtd_info mtd;
> + struct nand_chip chip;
> + struct nand_ecclayout ecclayout;
> +
> + struct device_d *dev;
> + struct clk *clk;
> +
> + bool is_readmode;
> +
> + void __iomem *base;
> + void __iomem *vaddr;
> +
> + uint32_t ioaddr;
> + uint32_t current_cs;
> +
> + uint32_t mask_chipsel;
> + uint32_t mask_ale;
> + uint32_t mask_cle;
> +
> + uint32_t core_chipsel;
> +
> + //struct davinci_aemif_timing *timing;
> +};
> +
> +static bool ecc4_busy;
> +
> +#define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
> +
> +
> +static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
> + int offset)
> +{
> + return __raw_readl(info->base + offset);
> +}
> +
> +static inline void davinci_nand_writel(struct davinci_nand_info *info,
> + int offset, unsigned long value)
> +{
> + __raw_writel(value, info->base + offset);
> +}
> +
> +/*----------------------------------------------------------------------*/
> +
> +/*
> + * Access to hardware control lines: ALE, CLE, secondary chipselect.
> + */
> +
> +static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
> + unsigned int ctrl)
> +{
> + struct davinci_nand_info *info = to_davinci_nand(mtd);
> + uint32_t addr = info->current_cs;
> + struct nand_chip *nand = mtd->priv;
> +
> + /* Did the control lines change? */
> + if (ctrl & NAND_CTRL_CHANGE) {
> + if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
> + addr |= info->mask_cle;
> + else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
> + addr |= info->mask_ale;
> +
> + nand->IO_ADDR_W = (void __iomem __force *)addr;
> + }
> +
> + if (cmd != NAND_CMD_NONE)
> + iowrite8(cmd, nand->IO_ADDR_W);
> +}
> +
> +static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
> +{
> + struct davinci_nand_info *info = to_davinci_nand(mtd);
> + uint32_t addr = info->ioaddr;
> +
> + /* maybe kick in a second chipselect */
> + if (chip > 0)
> + addr |= info->mask_chipsel;
> + info->current_cs = addr;
> +
> + info->chip.IO_ADDR_W = (void __iomem __force *)addr;
> + info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
> +}
> +
> +/*----------------------------------------------------------------------*/
> +
> +/*
> + * 1-bit hardware ECC ... context maintained for each core chipselect
> + */
> +
> +static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
> +{
> + struct davinci_nand_info *info = to_davinci_nand(mtd);
> +
> + dev_dbg(info->dev, "%s\n", __func__);
> +
> + return davinci_nand_readl(info, NANDF1ECC_OFFSET
> + + 4 * info->core_chipsel);
> +}
> +
> +static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
> +{
> + struct davinci_nand_info *info = to_davinci_nand(mtd);
> + uint32_t nandcfr;
> +
> + dev_dbg(info->dev, "%s\n", __func__);
> +
> + /* Reset ECC hardware */
> + nand_davinci_readecc_1bit(mtd);
> +
> + /* Restart ECC hardware */
> + nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
> + nandcfr |= BIT(8 + info->core_chipsel);
> + davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
> +}
> +
> +/*
> + * Read hardware ECC value and pack into three bytes
> + */
> +static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
> + const u_char *dat, u_char *ecc_code)
> +{
> + struct davinci_nand_info *info = to_davinci_nand(mtd);
> + unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
> + unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
> +
> + dev_dbg(info->dev, "%s\n", __func__);
> +
> + /* invert so that erased block ecc is correct */
> + ecc24 = ~ecc24;
> + ecc_code[0] = (u_char)(ecc24);
> + ecc_code[1] = (u_char)(ecc24 >> 8);
> + ecc_code[2] = (u_char)(ecc24 >> 16);
> +
> + return 0;
> +}
> +
> +static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
> + u_char *read_ecc, u_char *calc_ecc)
> +{
> + struct davinci_nand_info *info = to_davinci_nand(mtd);
> + struct nand_chip *chip = mtd->priv;
> + uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
> + (read_ecc[2] << 16);
> + uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
> + (calc_ecc[2] << 16);
> + uint32_t diff = eccCalc ^ eccNand;
> +
> + dev_dbg(info->dev, "%s nand=0x%x calc=0x%x\n", __func__, eccNand, eccCalc);
> +
> + if (diff) {
> + if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
> + /* Correctable error */
> + if ((diff >> (12 + 3)) < chip->ecc.size) {
> + dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
> + return 1;
> + } else {
> + return -1;
> + }
> + } else if (!(diff & (diff - 1))) {
> + /* Single bit ECC error in the ECC itself,
> + * nothing to fix */
> + return 1;
> + } else {
> + /* Uncorrectable error */
> + return -1;
> + }
> +
> + }
> + return 0;
> +}
> +
> +/*----------------------------------------------------------------------*/
> +
> +/*
> + * 4-bit hardware ECC ... context maintained over entire AEMIF
> + *
> + * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
> + * since that forces use of a problematic "infix OOB" layout.
> + * Among other things, it trashes manufacturer bad block markers.
> + * Also, and specific to this hardware, it ECC-protects the "prepad"
> + * in the OOB ... while having ECC protection for parts of OOB would
> + * seem useful, the current MTD stack sometimes wants to update the
> + * OOB without recomputing ECC.
> + */
> +
> +static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
> +{
> + struct davinci_nand_info *info = to_davinci_nand(mtd);
> + u32 val;
> +
> + /* Start 4-bit ECC calculation for read/write */
> + val = davinci_nand_readl(info, NANDFCR_OFFSET);
> + val &= ~(0x03 << 4);
> + val |= (info->core_chipsel << 4) | BIT(12);
> + davinci_nand_writel(info, NANDFCR_OFFSET, val);
> +
> + info->is_readmode = (mode == NAND_ECC_READ);
> +}
> +
> +/* Read raw ECC code after writing to NAND. */
> +static void
> +nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
> +{
> + const u32 mask = 0x03ff03ff;
> +
> + code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
> + code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
> + code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
> + code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
> +}
> +
> +/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
> +static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
> + const u_char *dat, u_char *ecc_code)
> +{
> + struct davinci_nand_info *info = to_davinci_nand(mtd);
> + u32 raw_ecc[4], *p;
> + unsigned i;
> +
> + /* After a read, terminate ECC calculation by a dummy read
> + * of some 4-bit ECC register. ECC covers everything that
> + * was read; correct() just uses the hardware state, so
> + * ecc_code is not needed.
> + */
> + if (info->is_readmode) {
> + davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
> + return 0;
> + }
> +
> + /* Pack eight raw 10-bit ecc values into ten bytes, making
> + * two passes which each convert four values (in upper and
> + * lower halves of two 32-bit words) into five bytes. The
> + * ROM boot loader uses this same packing scheme.
> + */
> + nand_davinci_readecc_4bit(info, raw_ecc);
> + for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
> + *ecc_code++ = p[0] & 0xff;
> + *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
> + *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
> + *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
> + *ecc_code++ = (p[1] >> 18) & 0xff;
> + }
> +
> + return 0;
> +}
> +
> +/* Correct up to 4 bits in data we just read, using state left in the
> + * hardware plus the ecc_code computed when it was first written.
> + */
> +static int nand_davinci_correct_4bit(struct mtd_info *mtd,
> + u_char *data, u_char *ecc_code, u_char *null)
> +{
> + int i;
> + struct davinci_nand_info *info = to_davinci_nand(mtd);
> + unsigned short ecc10[8];
> + unsigned short *ecc16;
> + u32 syndrome[4];
> + unsigned num_errors, corrected;
> +
> + /* All bytes 0xff? It's an erased page; ignore its ECC. */
> + for (i = 0; i < 10; i++) {
> + if (ecc_code[i] != 0xff)
> + goto compare;
> + }
> + return 0;
> +
> +compare:
> + /* Unpack ten bytes into eight 10 bit values. We know we're
> + * little-endian, and use type punning for less shifting/masking.
> + */
> + if (WARN_ON(0x01 & (unsigned) ecc_code))
> + return -EINVAL;
> + ecc16 = (unsigned short *)ecc_code;
> +
> + ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
> + ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
> + ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
> + ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
> + ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
> + ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
> + ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
> + ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
> +
> + /* Tell ECC controller about the expected ECC codes. */
> + for (i = 7; i >= 0; i--)
> + davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
> +
> + /* Allow time for syndrome calculation ... then read it.
> + * A syndrome of all zeroes 0 means no detected errors.
> + */
> + davinci_nand_readl(info, NANDFSR_OFFSET);
> + nand_davinci_readecc_4bit(info, syndrome);
> + if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
> + return 0;
> +
> + /*
> + * Clear any previous address calculation by doing a dummy read of an
> + * error address register.
> + */
> + davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
> +
> + /* Start address calculation, and wait for it to complete.
> + * We _could_ start reading more data while this is working,
> + * to speed up the overall page read.
> + */
> + davinci_nand_writel(info, NANDFCR_OFFSET,
> + davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
> +
> + /*
> + * ECC_STATE field reads 0x3 (Error correction complete) immediately
> + * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
> + * begin trying to poll for the state, you may fall right out of your
> + * loop without any of the correction calculations having taken place.
> + * The recommendation from the hardware team is to initially delay as
> + * long as ECC_STATE reads less than 4. After that, ECC HW has entered
> + * correction state.
> + */
> + wait_on_timeout(100 * USECOND,
> + ((davinci_nand_readl(info, NANDFSR_OFFSET) >> 8) & 0x0f)
> + < 4);
> +
> + for (;;) {
> + u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
> +
> + switch ((fsr >> 8) & 0x0f) {
> + case 0: /* no error, should not happen */
> + davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
> + return 0;
> + case 1: /* five or more errors detected */
> + davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
> + return -EIO;
> + case 2: /* error addresses computed */
> + case 3:
> + num_errors = 1 + ((fsr >> 16) & 0x03);
> + goto correct;
> + default: /* still working on it */
> + //cpu_relax();
> + continue;
> + }
> + }
> +
> +correct:
> + /* correct each error */
> + for (i = 0, corrected = 0; i < num_errors; i++) {
> + int error_address, error_value;
> +
> + if (i > 1) {
> + error_address = davinci_nand_readl(info,
> + NAND_ERR_ADD2_OFFSET);
> + error_value = davinci_nand_readl(info,
> + NAND_ERR_ERRVAL2_OFFSET);
> + } else {
> + error_address = davinci_nand_readl(info,
> + NAND_ERR_ADD1_OFFSET);
> + error_value = davinci_nand_readl(info,
> + NAND_ERR_ERRVAL1_OFFSET);
> + }
> +
> + if (i & 1) {
> + error_address >>= 16;
> + error_value >>= 16;
> + }
> + error_address &= 0x3ff;
> + error_address = (512 + 7) - error_address;
> +
> + if (error_address < 512) {
> + data[error_address] ^= error_value;
> + corrected++;
> + }
> + }
> +
> + return corrected;
> +}
> +
> +/*----------------------------------------------------------------------*/
> +
> +/*
> + * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
> + * how these chips are normally wired. This translates to both 8 and 16
> + * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
> + *
> + * For now we assume that configuration, or any other one which ignores
> + * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
> + * and have that transparently morphed into multiple NAND operations.
> + */
> +static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
> +{
> + struct nand_chip *chip = mtd->priv;
> + struct davinci_nand_info *info = to_davinci_nand(mtd);
> +
> + dev_dbg(info->dev, "%s\n", __func__);
> +
> +
> + if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
> + readsl(chip->IO_ADDR_R, buf, len >> 2);
> + else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
> + readsw(chip->IO_ADDR_R, buf, len >> 1);
> + else
> + readsb(chip->IO_ADDR_R, buf, len);
> +}
> +
> +static void nand_davinci_write_buf(struct mtd_info *mtd,
> + const uint8_t *buf, int len)
> +{
> + struct nand_chip *chip = mtd->priv;
> + struct davinci_nand_info *info = to_davinci_nand(mtd);
> +
> + dev_dbg(info->dev, "%s\n", __func__);
> +
> +
> + if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
> + writesl(chip->IO_ADDR_R, buf, len >> 2);
> + else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
> + writesw(chip->IO_ADDR_R, buf, len >> 1);
> + else
> + writesb(chip->IO_ADDR_R, buf, len);
> +}
> +
> +/*
> + * Check hardware register for wait status. Returns 1 if device is ready,
> + * 0 if it is still busy.
> + */
> +static int nand_davinci_dev_ready(struct mtd_info *mtd)
> +{
> + struct davinci_nand_info *info = to_davinci_nand(mtd);
> +
> + return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
> +}
> +
> +/*----------------------------------------------------------------------*/
> +
> +/* An ECC layout for using 4-bit ECC with small-page flash, storing
> + * ten ECC bytes plus the manufacturer's bad block marker byte, and
> + * and not overlapping the default BBT markers.
> + */
> +static struct nand_ecclayout hwecc4_small = {
> + .eccbytes = 10,
> + .eccpos = { 0, 1, 2, 3, 4,
> + /* offset 5 holds the badblock marker */
> + 6, 7,
> + 13, 14, 15, },
> + .oobfree = {
> + {.offset = 8, .length = 5, },
> + {.offset = 16, },
> + },
> +};
> +
> +/* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
> + * storing ten ECC bytes plus the manufacturer's bad block marker byte,
> + * and not overlapping the default BBT markers.
> + */
> +static struct nand_ecclayout hwecc4_2048 = {
> + .eccbytes = 40,
> + .eccpos = {
> + /* at the end of spare sector */
> + 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
> + 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
> + 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
> + 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
> + },
> + .oobfree = {
> + /* 2 bytes at offset 0 hold manufacturer badblock markers */
> + {.offset = 2, .length = 22, },
> + /* 5 bytes at offset 8 hold BBT markers */
> + /* 8 bytes at offset 16 hold JFFS2 clean markers */
> + },
> +};
> +
> +static struct of_device_id davinci_nand_of_match[] = {
> + {.compatible = "ti,davinci-nand", },
> + {.compatible = "ti,keystone-nand", },
> + {},
> +};
> +
> +static struct davinci_nand_pdata
> + *nand_davinci_get_pdata(struct device_d *dev)
> +{
> + struct davinci_nand_pdata *pdata;
> + const char *mode;
> + u32 prop;
> +
> + pdata = kzalloc(sizeof(struct davinci_nand_pdata),
> + GFP_KERNEL);
> + if (!pdata)
> + return ERR_PTR(-ENOMEM);
> + if (!of_property_read_u32(dev->device_node,
> + "ti,davinci-chipselect", &prop))
> + pdata->chipsel = prop;
> + else
> + return ERR_PTR(-EINVAL);
> +
> + if (!of_property_read_u32(dev->device_node,
> + "ti,davinci-mask-ale", &prop))
> + pdata->mask_ale = prop;
> + if (!of_property_read_u32(dev->device_node,
> + "ti,davinci-mask-cle", &prop))
> + pdata->mask_cle = prop;
> + if (!of_property_read_u32(dev->device_node,
> + "ti,davinci-mask-chipsel", &prop))
> + pdata->mask_chipsel = prop;
> + if (!of_property_read_string(dev->device_node,
> + "nand-ecc-mode", &mode) ||
> + !of_property_read_string(dev->device_node,
> + "ti,davinci-ecc-mode", &mode)) {
> + if (!strncmp("none", mode, 4))
> + pdata->ecc_mode = NAND_ECC_NONE;
> + if (!strncmp("soft", mode, 4))
> + pdata->ecc_mode = NAND_ECC_SOFT;
> + if (!strncmp("hw", mode, 2))
> + pdata->ecc_mode = NAND_ECC_HW;
> + }
> + if (!of_property_read_u32(dev->device_node,
> + "ti,davinci-ecc-bits", &prop))
> + pdata->ecc_bits = prop;
> +
> + prop = of_get_nand_bus_width(dev->device_node);
> + if (0 < prop || !of_property_read_u32(dev->device_node,
> + "ti,davinci-nand-buswidth", &prop))
> + if (prop == 16)
> + pdata->options |= NAND_BUSWIDTH_16;
> + if (of_property_read_bool(dev->device_node,
> + "nand-on-flash-bbt") ||
> + of_property_read_bool(dev->device_node,
> + "ti,davinci-nand-use-bbt"))
> + pdata->bbt_options = NAND_BBT_USE_FLASH;
> +
> + if (of_device_is_compatible(dev->device_node,
> + "ti,keystone-nand")) {
> + pdata->options |= NAND_NO_SUBPAGE_WRITE;
> + }
> + return pdata;
> +}
> +
> +static int nand_davinci_probe(struct device_d *dev)
> +{
> + struct davinci_nand_pdata *pdata;
> + struct davinci_nand_info *info;
> + int ret;
> + uint32_t val;
> + nand_ecc_modes_t ecc_mode;
> +
> + pdata = nand_davinci_get_pdata(dev);
> +
> + /* insist on board-specific configuration */
> + if (!pdata)
> + return -ENODEV;
> +
> + /* which external chipselect will we be managing? */
> + if (pdata->chipsel < 0 || pdata->chipsel > 3)
> + return -ENODEV;
> +
> + info = kzalloc(sizeof(*info), GFP_KERNEL);
> + if (!info)
> + return -ENOMEM;
> +
> + //platform_set_drvdata(pdev, info);
> +
> + info->dev = dev;
> + info->base = dev_request_mem_region(dev, 1);
> + info->vaddr = dev_request_mem_region(dev, 0);
> +
> + val = davinci_nand_readl(info, NRCSR_OFFSET);
> + dev_info(dev, "controller rev. %d.%d\n",
> + (val >> 8) & 0xff, val & 0xff);
> +
> + info->mtd.priv = &info->chip;
> + info->mtd.name = dev_name(dev);
> + info->mtd.parent = dev;
> +
> + info->chip.IO_ADDR_R = info->vaddr;
> + info->chip.IO_ADDR_W = info->vaddr;
> + info->chip.chip_delay = 0;
> + info->chip.select_chip = nand_davinci_select_chip;
> +
> + /* options such as NAND_BBT_USE_FLASH */
> + info->chip.bbt_options = pdata->bbt_options;
> + /* options such as 16-bit widths */
> + info->chip.options = pdata->options;
> + info->chip.bbt_td = pdata->bbt_td;
> + info->chip.bbt_md = pdata->bbt_md;
> + //info->timing = pdata->timing;
> +
> + info->ioaddr = (uint32_t __force) info->vaddr;
> +
> + info->current_cs = info->ioaddr;
> + info->core_chipsel = pdata->chipsel;
> + info->mask_chipsel = pdata->mask_chipsel;
> +
> + /* use nandboot-capable ALE/CLE masks by default */
> + info->mask_ale = pdata->mask_ale ? : MASK_ALE;
> + info->mask_cle = pdata->mask_cle ? : MASK_CLE;
> +
> + /* Set address of hardware control function */
> + info->chip.cmd_ctrl = nand_davinci_hwcontrol;
> + info->chip.dev_ready = nand_davinci_dev_ready;
> +
> + /* Speed up buffer I/O */
> + info->chip.read_buf = nand_davinci_read_buf;
> + info->chip.write_buf = nand_davinci_write_buf;
> +
> + /* Use board-specific ECC config */
> + ecc_mode = pdata->ecc_mode;
> +
> + ret = -EINVAL;
> + switch (ecc_mode) {
> + case NAND_ECC_NONE:
> + case NAND_ECC_SOFT:
> + pdata->ecc_bits = 0;
> + break;
> + case NAND_ECC_HW:
> + if (pdata->ecc_bits == 4) {
> + /* No sanity checks: CPUs must support this,
> + * and the chips may not use NAND_BUSWIDTH_16.
> + */
> +
> + /* No sharing 4-bit hardware between chipselects yet */
> + if (ecc4_busy)
> + ret = -EBUSY;
> + else
> + ecc4_busy = true;
> +
> + if (ret == -EBUSY)
> + return ret;
> +
> + info->chip.ecc.calculate = nand_davinci_calculate_4bit;
> + info->chip.ecc.correct = nand_davinci_correct_4bit;
> + info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
> + info->chip.ecc.bytes = 10;
> + } else {
> + info->chip.ecc.calculate = nand_davinci_calculate_1bit;
> + info->chip.ecc.correct = nand_davinci_correct_1bit;
> + info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
> + info->chip.ecc.bytes = 3;
> + }
> + info->chip.ecc.size = 512;
> + info->chip.ecc.strength = pdata->ecc_bits;
> + break;
> + default:
> + return -EINVAL;
> + }
> + info->chip.ecc.mode = ecc_mode;
> +
> + info->clk = clk_get(dev, "aemif");
> + if (IS_ERR(info->clk)) {
> + ret = PTR_ERR(info->clk);
> + dev_dbg(dev, "unable to get AEMIF clock, err %d\n", ret);
> + return ret;
> + }
> +
> + ret = clk_enable(info->clk);
> + if (ret < 0) {
> + dev_dbg(dev, "unable to enable AEMIF clock, err %d\n",
> + ret);
> + goto err_clk_enable;
> + }
> +
> + /* put CSxNAND into NAND mode */
> + val = davinci_nand_readl(info, NANDFCR_OFFSET);
> + val |= BIT(info->core_chipsel);
> + davinci_nand_writel(info, NANDFCR_OFFSET, val);
> +
> + /* Scan to find existence of the device(s) */
> + ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL);
> + if (ret < 0) {
> + dev_dbg(dev, "no NAND chip(s) found\n");
> + goto err;
> + }
> +
> + /* Update ECC layout if needed ... for 1-bit HW ECC, the default
> + * is OK, but it allocates 6 bytes when only 3 are needed (for
> + * each 512 bytes). For the 4-bit HW ECC, that default is not
> + * usable: 10 bytes are needed, not 6.
> + */
> + if (pdata->ecc_bits == 4) {
> + int chunks = info->mtd.writesize / 512;
> +
> + if (!chunks || info->mtd.oobsize < 16) {
> + dev_dbg(dev, "too small\n");
> + ret = -EINVAL;
> + goto err;
> + }
> +
> + /* For small page chips, preserve the manufacturer's
> + * badblock marking data ... and make sure a flash BBT
> + * table marker fits in the free bytes.
> + */
> + if (chunks == 1) {
> + info->ecclayout = hwecc4_small;
> + info->ecclayout.oobfree[1].length =
> + info->mtd.oobsize - 16;
> + goto syndrome_done;
> + }
> + if (chunks == 4) {
> + info->ecclayout = hwecc4_2048;
> + info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
> + goto syndrome_done;
> + }
> +
> + /* 4KiB page chips are not yet supported. The eccpos from
> + * nand_ecclayout cannot hold 80 bytes and change to eccpos[]
> + * breaks userspace ioctl interface with mtd-utils. Once we
> + * resolve this issue, NAND_ECC_HW_OOB_FIRST mode can be used
> + * for the 4KiB page chips.
> + *
> + * TODO: Note that nand_ecclayout has now been expanded and can
> + * hold plenty of OOB entries.
> + */
> + dev_warn(dev, "no 4-bit ECC support yet "
> + "for 4KiB-page NAND\n");
> + ret = -EIO;
> + goto err;
> +
> +syndrome_done:
> + info->chip.ecc.layout = &info->ecclayout;
> + }
> +
> + ret = nand_scan_tail(&info->mtd);
> + if (ret < 0)
> + goto err;
> +
> + add_mtd_nand_device(&info->mtd, "nand");
> +
> + return 0;
> +
> +err:
> + clk_disable(info->clk);
> +
> +err_clk_enable:
> + if (ecc_mode == NAND_ECC_HW_SYNDROME)
> + ecc4_busy = false;
> + return ret;
> +}
> +
> +static struct driver_d nand_davinci_driver = {
> + .name = "davinci_nand",
> + .probe = nand_davinci_probe,
> + .of_compatible = DRV_OF_COMPAT(davinci_nand_of_match),
> +};
> +device_platform_driver(nand_davinci_driver);
> +
> +MODULE_LICENSE("GPL");
> +MODULE_AUTHOR("Texas Instruments");
> +MODULE_DESCRIPTION("Davinci NAND flash driver");
> +
> --
> 2.1.4
>
>
> _______________________________________________
> barebox mailing list
> barebox@lists.infradead.org
> http://lists.infradead.org/mailman/listinfo/barebox
--
--
Best regards,
Antony Pavlov
_______________________________________________
barebox mailing list
barebox@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/barebox
prev parent reply other threads:[~2015-05-31 13:52 UTC|newest]
Thread overview: 2+ messages / expand[flat|nested] mbox.gz Atom feed top
2015-05-30 13:04 Jan Luebbe
2015-05-31 13:58 ` Antony Pavlov [this message]
Reply instructions:
You may reply publicly to this message via plain-text email
using any one of the following methods:
* Save the following mbox file, import it into your mail client,
and reply-to-all from there: mbox
Avoid top-posting and favor interleaved quoting:
https://en.wikipedia.org/wiki/Posting_style#Interleaved_style
* Reply using the --to, --cc, and --in-reply-to
switches of git-send-email(1):
git send-email \
--in-reply-to=20150531165801.1239a325f2bcba1c1bafc874@gmail.com \
--to=antonynpavlov@gmail.com \
--cc=barebox@lists.infradead.org \
--cc=jluebbe@debian.org \
/path/to/YOUR_REPLY
https://kernel.org/pub/software/scm/git/docs/git-send-email.html
* If your mail client supports setting the In-Reply-To header
via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line
before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox