mail archive of the barebox mailing list
 help / color / mirror / Atom feed
From: Sascha Hauer <s.hauer@pengutronix.de>
To: Barebox List <barebox@lists.infradead.org>
Subject: [PATCH v3 13/15] Add elliptic curve cryptography (ECC) helper functions
Date: Fri,  6 Sep 2024 12:40:26 +0200	[thread overview]
Message-ID: <20240906104028.2187872-14-s.hauer@pengutronix.de> (raw)
In-Reply-To: <20240906104028.2187872-1-s.hauer@pengutronix.de>

This ports the functions needed for supporting elliptic curve cryptography
(ECC) from the Kernel. The code is taken from Linux-6.10 and mostly
unchanged.

Link: https://lore.barebox.org/20240801055737.3190132-17-s.hauer@pengutronix.de
Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de>
---
 crypto/Kconfig                |    3 +
 crypto/Makefile               |    1 +
 crypto/ecc.c                  | 1661 +++++++++++++++++++++++++++++++++
 crypto/ecc_curve_defs.h       |  155 +++
 include/crypto/ecc_curve.h    |   62 ++
 include/crypto/ecdh.h         |   83 ++
 include/crypto/internal/ecc.h |  278 ++++++
 7 files changed, 2243 insertions(+)
 create mode 100644 crypto/ecc.c
 create mode 100644 crypto/ecc_curve_defs.h
 create mode 100644 include/crypto/ecc_curve.h
 create mode 100644 include/crypto/ecdh.h
 create mode 100644 include/crypto/internal/ecc.h

diff --git a/crypto/Kconfig b/crypto/Kconfig
index 6b2e73c503..7935af3da8 100644
--- a/crypto/Kconfig
+++ b/crypto/Kconfig
@@ -148,4 +148,7 @@ config JWT
 	select BASE64
 	select CRYPTO_RSA
 
+config CRYPTO_ECC
+	bool
+
 endmenu
diff --git a/crypto/Makefile b/crypto/Makefile
index 9fa2200f47..a697bb594f 100644
--- a/crypto/Makefile
+++ b/crypto/Makefile
@@ -19,6 +19,7 @@ obj-$(CONFIG_CRYPTO_PBKDF2)	+= pbkdf2.o
 obj-$(CONFIG_CRYPTO_RSA)	+= rsa.o
 obj-$(CONFIG_CRYPTO_KEYSTORE)	+= keystore.o
 obj-$(CONFIG_CRYPTO_BUILTIN_KEYS)      += public-keys.o
+obj-$(CONFIG_CRYPTO_ECC)	+= ecc.o
 
 obj-$(CONFIG_JWT)		+= jwt.o
 
diff --git a/crypto/ecc.c b/crypto/ecc.c
new file mode 100644
index 0000000000..a0ab962262
--- /dev/null
+++ b/crypto/ecc.c
@@ -0,0 +1,1661 @@
+/*
+ * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved.
+ * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org>
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met:
+ *  * Redistributions of source code must retain the above copyright
+ *   notice, this list of conditions and the following disclaimer.
+ *  * Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <common.h>
+#include <stdlib.h>
+#include <crypto/ecc_curve.h>
+#include <crypto/ecdh.h>
+#include <crypto/internal/ecc.h>
+#include <asm/unaligned.h>
+
+#include "ecc_curve_defs.h"
+
+typedef struct {
+	u64 m_low;
+	u64 m_high;
+} uint128_t;
+
+/* Returns curv25519 curve param */
+const struct ecc_curve *ecc_get_curve25519(void)
+{
+	return &ecc_25519;
+}
+EXPORT_SYMBOL(ecc_get_curve25519);
+
+const struct ecc_curve *ecc_get_curve(unsigned int curve_id)
+{
+	switch (curve_id) {
+	case ECC_CURVE_NIST_P192:
+		return &nist_p192;
+	case ECC_CURVE_NIST_P256:
+		return &nist_p256;
+	case ECC_CURVE_NIST_P384:
+		return &nist_p384;
+	case ECC_CURVE_NIST_P521:
+		return &nist_p521;
+	default:
+		return NULL;
+	}
+}
+EXPORT_SYMBOL(ecc_get_curve);
+
+void ecc_digits_from_bytes(const u8 *in, unsigned int nbytes,
+			   u64 *out, unsigned int ndigits)
+{
+	int diff = ndigits - DIV_ROUND_UP(nbytes, sizeof(u64));
+	unsigned int o = nbytes & 7;
+	__be64 msd = 0;
+
+	/* diff > 0: not enough input bytes: set most significant digits to 0 */
+	if (diff > 0) {
+		ndigits -= diff;
+		memset(&out[ndigits - 1], 0, diff * sizeof(u64));
+	}
+
+	if (o) {
+		memcpy((u8 *)&msd + sizeof(msd) - o, in, o);
+		out[--ndigits] = be64_to_cpu(msd);
+		in += o;
+	}
+	ecc_swap_digits(in, out, ndigits);
+}
+EXPORT_SYMBOL(ecc_digits_from_bytes);
+
+static u64 *ecc_alloc_digits_space(unsigned int ndigits)
+{
+	size_t len = ndigits * sizeof(u64);
+
+	if (!len)
+		return NULL;
+
+	return kmalloc(len, GFP_KERNEL);
+}
+
+static void ecc_free_digits_space(u64 *space)
+{
+	kfree_sensitive(space);
+}
+
+struct ecc_point *ecc_alloc_point(unsigned int ndigits)
+{
+	struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL);
+
+	if (!p)
+		return NULL;
+
+	p->x = ecc_alloc_digits_space(ndigits);
+	if (!p->x)
+		goto err_alloc_x;
+
+	p->y = ecc_alloc_digits_space(ndigits);
+	if (!p->y)
+		goto err_alloc_y;
+
+	p->ndigits = ndigits;
+
+	return p;
+
+err_alloc_y:
+	ecc_free_digits_space(p->x);
+err_alloc_x:
+	kfree(p);
+	return NULL;
+}
+EXPORT_SYMBOL(ecc_alloc_point);
+
+void ecc_free_point(struct ecc_point *p)
+{
+	if (!p)
+		return;
+
+	kfree_sensitive(p->x);
+	kfree_sensitive(p->y);
+	kfree_sensitive(p);
+}
+EXPORT_SYMBOL(ecc_free_point);
+
+static void vli_clear(u64 *vli, unsigned int ndigits)
+{
+	int i;
+
+	for (i = 0; i < ndigits; i++)
+		vli[i] = 0;
+}
+
+/* Returns true if vli == 0, false otherwise. */
+bool vli_is_zero(const u64 *vli, unsigned int ndigits)
+{
+	int i;
+
+	for (i = 0; i < ndigits; i++) {
+		if (vli[i])
+			return false;
+	}
+
+	return true;
+}
+EXPORT_SYMBOL(vli_is_zero);
+
+/* Returns nonzero if bit of vli is set. */
+static u64 vli_test_bit(const u64 *vli, unsigned int bit)
+{
+	return (vli[bit / 64] & ((u64)1 << (bit % 64)));
+}
+
+static bool vli_is_negative(const u64 *vli, unsigned int ndigits)
+{
+	return vli_test_bit(vli, ndigits * 64 - 1);
+}
+
+/* Counts the number of 64-bit "digits" in vli. */
+static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits)
+{
+	int i;
+
+	/* Search from the end until we find a non-zero digit.
+	 * We do it in reverse because we expect that most digits will
+	 * be nonzero.
+	 */
+	for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--);
+
+	return (i + 1);
+}
+
+/* Counts the number of bits required for vli. */
+unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits)
+{
+	unsigned int i, num_digits;
+	u64 digit;
+
+	num_digits = vli_num_digits(vli, ndigits);
+	if (num_digits == 0)
+		return 0;
+
+	digit = vli[num_digits - 1];
+	for (i = 0; digit; i++)
+		digit >>= 1;
+
+	return ((num_digits - 1) * 64 + i);
+}
+EXPORT_SYMBOL(vli_num_bits);
+
+/* Set dest from unaligned bit string src. */
+void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits)
+{
+	int i;
+	const u64 *from = src;
+
+	for (i = 0; i < ndigits; i++)
+		dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]);
+}
+EXPORT_SYMBOL(vli_from_be64);
+
+void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits)
+{
+	int i;
+	const u64 *from = src;
+
+	for (i = 0; i < ndigits; i++)
+		dest[i] = get_unaligned_le64(&from[i]);
+}
+EXPORT_SYMBOL(vli_from_le64);
+
+/* Sets dest = src. */
+static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
+{
+	int i;
+
+	for (i = 0; i < ndigits; i++)
+		dest[i] = src[i];
+}
+
+/* Returns sign of left - right. */
+int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
+{
+	int i;
+
+	for (i = ndigits - 1; i >= 0; i--) {
+		if (left[i] > right[i])
+			return 1;
+		else if (left[i] < right[i])
+			return -1;
+	}
+
+	return 0;
+}
+EXPORT_SYMBOL(vli_cmp);
+
+/* Computes result = in << c, returning carry. Can modify in place
+ * (if result == in). 0 < shift < 64.
+ */
+static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift,
+		      unsigned int ndigits)
+{
+	u64 carry = 0;
+	int i;
+
+	for (i = 0; i < ndigits; i++) {
+		u64 temp = in[i];
+
+		result[i] = (temp << shift) | carry;
+		carry = temp >> (64 - shift);
+	}
+
+	return carry;
+}
+
+/* Computes vli = vli >> 1. */
+static void vli_rshift1(u64 *vli, unsigned int ndigits)
+{
+	u64 *end = vli;
+	u64 carry = 0;
+
+	vli += ndigits;
+
+	while (vli-- > end) {
+		u64 temp = *vli;
+		*vli = (temp >> 1) | carry;
+		carry = temp << 63;
+	}
+}
+
+/* Computes result = left + right, returning carry. Can modify in place. */
+static u64 vli_add(u64 *result, const u64 *left, const u64 *right,
+		   unsigned int ndigits)
+{
+	u64 carry = 0;
+	int i;
+
+	for (i = 0; i < ndigits; i++) {
+		u64 sum;
+
+		sum = left[i] + right[i] + carry;
+		if (sum != left[i])
+			carry = (sum < left[i]);
+
+		result[i] = sum;
+	}
+
+	return carry;
+}
+
+/* Computes result = left + right, returning carry. Can modify in place. */
+static u64 vli_uadd(u64 *result, const u64 *left, u64 right,
+		    unsigned int ndigits)
+{
+	u64 carry = right;
+	int i;
+
+	for (i = 0; i < ndigits; i++) {
+		u64 sum;
+
+		sum = left[i] + carry;
+		if (sum != left[i])
+			carry = (sum < left[i]);
+		else
+			carry = !!carry;
+
+		result[i] = sum;
+	}
+
+	return carry;
+}
+
+/* Computes result = left - right, returning borrow. Can modify in place. */
+u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
+		   unsigned int ndigits)
+{
+	u64 borrow = 0;
+	int i;
+
+	for (i = 0; i < ndigits; i++) {
+		u64 diff;
+
+		diff = left[i] - right[i] - borrow;
+		if (diff != left[i])
+			borrow = (diff > left[i]);
+
+		result[i] = diff;
+	}
+
+	return borrow;
+}
+EXPORT_SYMBOL(vli_sub);
+
+/* Computes result = left - right, returning borrow. Can modify in place. */
+static u64 vli_usub(u64 *result, const u64 *left, u64 right,
+	     unsigned int ndigits)
+{
+	u64 borrow = right;
+	int i;
+
+	for (i = 0; i < ndigits; i++) {
+		u64 diff;
+
+		diff = left[i] - borrow;
+		if (diff != left[i])
+			borrow = (diff > left[i]);
+
+		result[i] = diff;
+	}
+
+	return borrow;
+}
+
+static uint128_t mul_64_64(u64 left, u64 right)
+{
+	uint128_t result;
+#if defined(CONFIG_ARCH_SUPPORTS_INT128)
+	unsigned __int128 m = (unsigned __int128)left * right;
+
+	result.m_low  = m;
+	result.m_high = m >> 64;
+#else
+	u64 a0 = left & 0xffffffffull;
+	u64 a1 = left >> 32;
+	u64 b0 = right & 0xffffffffull;
+	u64 b1 = right >> 32;
+	u64 m0 = a0 * b0;
+	u64 m1 = a0 * b1;
+	u64 m2 = a1 * b0;
+	u64 m3 = a1 * b1;
+
+	m2 += (m0 >> 32);
+	m2 += m1;
+
+	/* Overflow */
+	if (m2 < m1)
+		m3 += 0x100000000ull;
+
+	result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
+	result.m_high = m3 + (m2 >> 32);
+#endif
+	return result;
+}
+
+static uint128_t add_128_128(uint128_t a, uint128_t b)
+{
+	uint128_t result;
+
+	result.m_low = a.m_low + b.m_low;
+	result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
+
+	return result;
+}
+
+static void vli_mult(u64 *result, const u64 *left, const u64 *right,
+		     unsigned int ndigits)
+{
+	uint128_t r01 = { 0, 0 };
+	u64 r2 = 0;
+	unsigned int i, k;
+
+	/* Compute each digit of result in sequence, maintaining the
+	 * carries.
+	 */
+	for (k = 0; k < ndigits * 2 - 1; k++) {
+		unsigned int min;
+
+		if (k < ndigits)
+			min = 0;
+		else
+			min = (k + 1) - ndigits;
+
+		for (i = min; i <= k && i < ndigits; i++) {
+			uint128_t product;
+
+			product = mul_64_64(left[i], right[k - i]);
+
+			r01 = add_128_128(r01, product);
+			r2 += (r01.m_high < product.m_high);
+		}
+
+		result[k] = r01.m_low;
+		r01.m_low = r01.m_high;
+		r01.m_high = r2;
+		r2 = 0;
+	}
+
+	result[ndigits * 2 - 1] = r01.m_low;
+}
+
+/* Compute product = left * right, for a small right value. */
+static void vli_umult(u64 *result, const u64 *left, u32 right,
+		      unsigned int ndigits)
+{
+	uint128_t r01 = { 0 };
+	unsigned int k;
+
+	for (k = 0; k < ndigits; k++) {
+		uint128_t product;
+
+		product = mul_64_64(left[k], right);
+		r01 = add_128_128(r01, product);
+		/* no carry */
+		result[k] = r01.m_low;
+		r01.m_low = r01.m_high;
+		r01.m_high = 0;
+	}
+	result[k] = r01.m_low;
+	for (++k; k < ndigits * 2; k++)
+		result[k] = 0;
+}
+
+static void vli_square(u64 *result, const u64 *left, unsigned int ndigits)
+{
+	uint128_t r01 = { 0, 0 };
+	u64 r2 = 0;
+	int i, k;
+
+	for (k = 0; k < ndigits * 2 - 1; k++) {
+		unsigned int min;
+
+		if (k < ndigits)
+			min = 0;
+		else
+			min = (k + 1) - ndigits;
+
+		for (i = min; i <= k && i <= k - i; i++) {
+			uint128_t product;
+
+			product = mul_64_64(left[i], left[k - i]);
+
+			if (i < k - i) {
+				r2 += product.m_high >> 63;
+				product.m_high = (product.m_high << 1) |
+						 (product.m_low >> 63);
+				product.m_low <<= 1;
+			}
+
+			r01 = add_128_128(r01, product);
+			r2 += (r01.m_high < product.m_high);
+		}
+
+		result[k] = r01.m_low;
+		r01.m_low = r01.m_high;
+		r01.m_high = r2;
+		r2 = 0;
+	}
+
+	result[ndigits * 2 - 1] = r01.m_low;
+}
+
+/* Computes result = (left + right) % mod.
+ * Assumes that left < mod and right < mod, result != mod.
+ */
+static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
+			const u64 *mod, unsigned int ndigits)
+{
+	u64 carry;
+
+	carry = vli_add(result, left, right, ndigits);
+
+	/* result > mod (result = mod + remainder), so subtract mod to
+	 * get remainder.
+	 */
+	if (carry || vli_cmp(result, mod, ndigits) >= 0)
+		vli_sub(result, result, mod, ndigits);
+}
+
+/* Computes result = (left - right) % mod.
+ * Assumes that left < mod and right < mod, result != mod.
+ */
+static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
+			const u64 *mod, unsigned int ndigits)
+{
+	u64 borrow = vli_sub(result, left, right, ndigits);
+
+	/* In this case, p_result == -diff == (max int) - diff.
+	 * Since -x % d == d - x, we can get the correct result from
+	 * result + mod (with overflow).
+	 */
+	if (borrow)
+		vli_add(result, result, mod, ndigits);
+}
+
+/*
+ * Computes result = product % mod
+ * for special form moduli: p = 2^k-c, for small c (note the minus sign)
+ *
+ * References:
+ * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective.
+ * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form
+ * Algorithm 9.2.13 (Fast mod operation for special-form moduli).
+ */
+static void vli_mmod_special(u64 *result, const u64 *product,
+			      const u64 *mod, unsigned int ndigits)
+{
+	u64 c = -mod[0];
+	u64 t[ECC_MAX_DIGITS * 2];
+	u64 r[ECC_MAX_DIGITS * 2];
+
+	vli_set(r, product, ndigits * 2);
+	while (!vli_is_zero(r + ndigits, ndigits)) {
+		vli_umult(t, r + ndigits, c, ndigits);
+		vli_clear(r + ndigits, ndigits);
+		vli_add(r, r, t, ndigits * 2);
+	}
+	vli_set(t, mod, ndigits);
+	vli_clear(t + ndigits, ndigits);
+	while (vli_cmp(r, t, ndigits * 2) >= 0)
+		vli_sub(r, r, t, ndigits * 2);
+	vli_set(result, r, ndigits);
+}
+
+/*
+ * Computes result = product % mod
+ * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign)
+ * where k-1 does not fit into qword boundary by -1 bit (such as 255).
+
+ * References (loosely based on):
+ * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography.
+ * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47.
+ * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf
+ *
+ * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren.
+ * Handbook of Elliptic and Hyperelliptic Curve Cryptography.
+ * Algorithm 10.25 Fast reduction for special form moduli
+ */
+static void vli_mmod_special2(u64 *result, const u64 *product,
+			       const u64 *mod, unsigned int ndigits)
+{
+	u64 c2 = mod[0] * 2;
+	u64 q[ECC_MAX_DIGITS];
+	u64 r[ECC_MAX_DIGITS * 2];
+	u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */
+	int carry; /* last bit that doesn't fit into q */
+	int i;
+
+	vli_set(m, mod, ndigits);
+	vli_clear(m + ndigits, ndigits);
+
+	vli_set(r, product, ndigits);
+	/* q and carry are top bits */
+	vli_set(q, product + ndigits, ndigits);
+	vli_clear(r + ndigits, ndigits);
+	carry = vli_is_negative(r, ndigits);
+	if (carry)
+		r[ndigits - 1] &= (1ull << 63) - 1;
+	for (i = 1; carry || !vli_is_zero(q, ndigits); i++) {
+		u64 qc[ECC_MAX_DIGITS * 2];
+
+		vli_umult(qc, q, c2, ndigits);
+		if (carry)
+			vli_uadd(qc, qc, mod[0], ndigits * 2);
+		vli_set(q, qc + ndigits, ndigits);
+		vli_clear(qc + ndigits, ndigits);
+		carry = vli_is_negative(qc, ndigits);
+		if (carry)
+			qc[ndigits - 1] &= (1ull << 63) - 1;
+		if (i & 1)
+			vli_sub(r, r, qc, ndigits * 2);
+		else
+			vli_add(r, r, qc, ndigits * 2);
+	}
+	while (vli_is_negative(r, ndigits * 2))
+		vli_add(r, r, m, ndigits * 2);
+	while (vli_cmp(r, m, ndigits * 2) >= 0)
+		vli_sub(r, r, m, ndigits * 2);
+
+	vli_set(result, r, ndigits);
+}
+
+/*
+ * Computes result = product % mod, where product is 2N words long.
+ * Reference: Ken MacKay's micro-ecc.
+ * Currently only designed to work for curve_p or curve_n.
+ */
+static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod,
+			  unsigned int ndigits)
+{
+	u64 mod_m[2 * ECC_MAX_DIGITS];
+	u64 tmp[2 * ECC_MAX_DIGITS];
+	u64 *v[2] = { tmp, product };
+	u64 carry = 0;
+	unsigned int i;
+	/* Shift mod so its highest set bit is at the maximum position. */
+	int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits);
+	int word_shift = shift / 64;
+	int bit_shift = shift % 64;
+
+	vli_clear(mod_m, word_shift);
+	if (bit_shift > 0) {
+		for (i = 0; i < ndigits; ++i) {
+			mod_m[word_shift + i] = (mod[i] << bit_shift) | carry;
+			carry = mod[i] >> (64 - bit_shift);
+		}
+	} else
+		vli_set(mod_m + word_shift, mod, ndigits);
+
+	for (i = 1; shift >= 0; --shift) {
+		u64 borrow = 0;
+		unsigned int j;
+
+		for (j = 0; j < ndigits * 2; ++j) {
+			u64 diff = v[i][j] - mod_m[j] - borrow;
+
+			if (diff != v[i][j])
+				borrow = (diff > v[i][j]);
+			v[1 - i][j] = diff;
+		}
+		i = !(i ^ borrow); /* Swap the index if there was no borrow */
+		vli_rshift1(mod_m, ndigits);
+		mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1);
+		vli_rshift1(mod_m + ndigits, ndigits);
+	}
+	vli_set(result, v[i], ndigits);
+}
+
+/* Computes result = product % mod using Barrett's reduction with precomputed
+ * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have
+ * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits
+ * boundary.
+ *
+ * Reference:
+ * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010.
+ * 2.4.1 Barrett's algorithm. Algorithm 2.5.
+ */
+static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod,
+			     unsigned int ndigits)
+{
+	u64 q[ECC_MAX_DIGITS * 2];
+	u64 r[ECC_MAX_DIGITS * 2];
+	const u64 *mu = mod + ndigits;
+
+	vli_mult(q, product + ndigits, mu, ndigits);
+	if (mu[ndigits])
+		vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits);
+	vli_mult(r, mod, q + ndigits, ndigits);
+	vli_sub(r, product, r, ndigits * 2);
+	while (!vli_is_zero(r + ndigits, ndigits) ||
+	       vli_cmp(r, mod, ndigits) != -1) {
+		u64 carry;
+
+		carry = vli_sub(r, r, mod, ndigits);
+		vli_usub(r + ndigits, r + ndigits, carry, ndigits);
+	}
+	vli_set(result, r, ndigits);
+}
+
+/* Computes p_result = p_product % curve_p.
+ * See algorithm 5 and 6 from
+ * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
+ */
+static void vli_mmod_fast_192(u64 *result, const u64 *product,
+			      const u64 *curve_prime, u64 *tmp)
+{
+	const unsigned int ndigits = ECC_CURVE_NIST_P192_DIGITS;
+	int carry;
+
+	vli_set(result, product, ndigits);
+
+	vli_set(tmp, &product[3], ndigits);
+	carry = vli_add(result, result, tmp, ndigits);
+
+	tmp[0] = 0;
+	tmp[1] = product[3];
+	tmp[2] = product[4];
+	carry += vli_add(result, result, tmp, ndigits);
+
+	tmp[0] = tmp[1] = product[5];
+	tmp[2] = 0;
+	carry += vli_add(result, result, tmp, ndigits);
+
+	while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
+		carry -= vli_sub(result, result, curve_prime, ndigits);
+}
+
+/* Computes result = product % curve_prime
+ * from http://www.nsa.gov/ia/_files/nist-routines.pdf
+ */
+static void vli_mmod_fast_256(u64 *result, const u64 *product,
+			      const u64 *curve_prime, u64 *tmp)
+{
+	int carry;
+	const unsigned int ndigits = ECC_CURVE_NIST_P256_DIGITS;
+
+	/* t */
+	vli_set(result, product, ndigits);
+
+	/* s1 */
+	tmp[0] = 0;
+	tmp[1] = product[5] & 0xffffffff00000000ull;
+	tmp[2] = product[6];
+	tmp[3] = product[7];
+	carry = vli_lshift(tmp, tmp, 1, ndigits);
+	carry += vli_add(result, result, tmp, ndigits);
+
+	/* s2 */
+	tmp[1] = product[6] << 32;
+	tmp[2] = (product[6] >> 32) | (product[7] << 32);
+	tmp[3] = product[7] >> 32;
+	carry += vli_lshift(tmp, tmp, 1, ndigits);
+	carry += vli_add(result, result, tmp, ndigits);
+
+	/* s3 */
+	tmp[0] = product[4];
+	tmp[1] = product[5] & 0xffffffff;
+	tmp[2] = 0;
+	tmp[3] = product[7];
+	carry += vli_add(result, result, tmp, ndigits);
+
+	/* s4 */
+	tmp[0] = (product[4] >> 32) | (product[5] << 32);
+	tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
+	tmp[2] = product[7];
+	tmp[3] = (product[6] >> 32) | (product[4] << 32);
+	carry += vli_add(result, result, tmp, ndigits);
+
+	/* d1 */
+	tmp[0] = (product[5] >> 32) | (product[6] << 32);
+	tmp[1] = (product[6] >> 32);
+	tmp[2] = 0;
+	tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
+	carry -= vli_sub(result, result, tmp, ndigits);
+
+	/* d2 */
+	tmp[0] = product[6];
+	tmp[1] = product[7];
+	tmp[2] = 0;
+	tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
+	carry -= vli_sub(result, result, tmp, ndigits);
+
+	/* d3 */
+	tmp[0] = (product[6] >> 32) | (product[7] << 32);
+	tmp[1] = (product[7] >> 32) | (product[4] << 32);
+	tmp[2] = (product[4] >> 32) | (product[5] << 32);
+	tmp[3] = (product[6] << 32);
+	carry -= vli_sub(result, result, tmp, ndigits);
+
+	/* d4 */
+	tmp[0] = product[7];
+	tmp[1] = product[4] & 0xffffffff00000000ull;
+	tmp[2] = product[5];
+	tmp[3] = product[6] & 0xffffffff00000000ull;
+	carry -= vli_sub(result, result, tmp, ndigits);
+
+	if (carry < 0) {
+		do {
+			carry += vli_add(result, result, curve_prime, ndigits);
+		} while (carry < 0);
+	} else {
+		while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
+			carry -= vli_sub(result, result, curve_prime, ndigits);
+	}
+}
+
+#define SL32OR32(x32, y32) (((u64)x32 << 32) | y32)
+#define AND64H(x64)  (x64 & 0xffFFffFF00000000ull)
+#define AND64L(x64)  (x64 & 0x00000000ffFFffFFull)
+
+/* Computes result = product % curve_prime
+ * from "Mathematical routines for the NIST prime elliptic curves"
+ */
+static void vli_mmod_fast_384(u64 *result, const u64 *product,
+				const u64 *curve_prime, u64 *tmp)
+{
+	int carry;
+	const unsigned int ndigits = ECC_CURVE_NIST_P384_DIGITS;
+
+	/* t */
+	vli_set(result, product, ndigits);
+
+	/* s1 */
+	tmp[0] = 0;		// 0 || 0
+	tmp[1] = 0;		// 0 || 0
+	tmp[2] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
+	tmp[3] = product[11]>>32;	// 0 ||a23
+	tmp[4] = 0;		// 0 || 0
+	tmp[5] = 0;		// 0 || 0
+	carry = vli_lshift(tmp, tmp, 1, ndigits);
+	carry += vli_add(result, result, tmp, ndigits);
+
+	/* s2 */
+	tmp[0] = product[6];	//a13||a12
+	tmp[1] = product[7];	//a15||a14
+	tmp[2] = product[8];	//a17||a16
+	tmp[3] = product[9];	//a19||a18
+	tmp[4] = product[10];	//a21||a20
+	tmp[5] = product[11];	//a23||a22
+	carry += vli_add(result, result, tmp, ndigits);
+
+	/* s3 */
+	tmp[0] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
+	tmp[1] = SL32OR32(product[6], (product[11]>>32));	//a12||a23
+	tmp[2] = SL32OR32(product[7], (product[6])>>32);	//a14||a13
+	tmp[3] = SL32OR32(product[8], (product[7]>>32));	//a16||a15
+	tmp[4] = SL32OR32(product[9], (product[8]>>32));	//a18||a17
+	tmp[5] = SL32OR32(product[10], (product[9]>>32));	//a20||a19
+	carry += vli_add(result, result, tmp, ndigits);
+
+	/* s4 */
+	tmp[0] = AND64H(product[11]);	//a23|| 0
+	tmp[1] = (product[10]<<32);	//a20|| 0
+	tmp[2] = product[6];	//a13||a12
+	tmp[3] = product[7];	//a15||a14
+	tmp[4] = product[8];	//a17||a16
+	tmp[5] = product[9];	//a19||a18
+	carry += vli_add(result, result, tmp, ndigits);
+
+	/* s5 */
+	tmp[0] = 0;		//  0|| 0
+	tmp[1] = 0;		//  0|| 0
+	tmp[2] = product[10];	//a21||a20
+	tmp[3] = product[11];	//a23||a22
+	tmp[4] = 0;		//  0|| 0
+	tmp[5] = 0;		//  0|| 0
+	carry += vli_add(result, result, tmp, ndigits);
+
+	/* s6 */
+	tmp[0] = AND64L(product[10]);	// 0 ||a20
+	tmp[1] = AND64H(product[10]);	//a21|| 0
+	tmp[2] = product[11];	//a23||a22
+	tmp[3] = 0;		// 0 || 0
+	tmp[4] = 0;		// 0 || 0
+	tmp[5] = 0;		// 0 || 0
+	carry += vli_add(result, result, tmp, ndigits);
+
+	/* d1 */
+	tmp[0] = SL32OR32(product[6], (product[11]>>32));	//a12||a23
+	tmp[1] = SL32OR32(product[7], (product[6]>>32));	//a14||a13
+	tmp[2] = SL32OR32(product[8], (product[7]>>32));	//a16||a15
+	tmp[3] = SL32OR32(product[9], (product[8]>>32));	//a18||a17
+	tmp[4] = SL32OR32(product[10], (product[9]>>32));	//a20||a19
+	tmp[5] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
+	carry -= vli_sub(result, result, tmp, ndigits);
+
+	/* d2 */
+	tmp[0] = (product[10]<<32);	//a20|| 0
+	tmp[1] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
+	tmp[2] = (product[11]>>32);	// 0 ||a23
+	tmp[3] = 0;		// 0 || 0
+	tmp[4] = 0;		// 0 || 0
+	tmp[5] = 0;		// 0 || 0
+	carry -= vli_sub(result, result, tmp, ndigits);
+
+	/* d3 */
+	tmp[0] = 0;		// 0 || 0
+	tmp[1] = AND64H(product[11]);	//a23|| 0
+	tmp[2] = product[11]>>32;	// 0 ||a23
+	tmp[3] = 0;		// 0 || 0
+	tmp[4] = 0;		// 0 || 0
+	tmp[5] = 0;		// 0 || 0
+	carry -= vli_sub(result, result, tmp, ndigits);
+
+	if (carry < 0) {
+		do {
+			carry += vli_add(result, result, curve_prime, ndigits);
+		} while (carry < 0);
+	} else {
+		while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
+			carry -= vli_sub(result, result, curve_prime, ndigits);
+	}
+
+}
+
+#undef SL32OR32
+#undef AND64H
+#undef AND64L
+
+/*
+ * Computes result = product % curve_prime
+ * from "Recommendations for Discrete Logarithm-Based Cryptography:
+ *       Elliptic Curve Domain Parameters" section G.1.4
+ */
+static void vli_mmod_fast_521(u64 *result, const u64 *product,
+			      const u64 *curve_prime, u64 *tmp)
+{
+	const unsigned int ndigits = ECC_CURVE_NIST_P521_DIGITS;
+	size_t i;
+
+	/* Initialize result with lowest 521 bits from product */
+	vli_set(result, product, ndigits);
+	result[8] &= 0x1ff;
+
+	for (i = 0; i < ndigits; i++)
+		tmp[i] = (product[8 + i] >> 9) | (product[9 + i] << 55);
+	tmp[8] &= 0x1ff;
+
+	vli_mod_add(result, result, tmp, curve_prime, ndigits);
+}
+
+/* Computes result = product % curve_prime for different curve_primes.
+ *
+ * Note that curve_primes are distinguished just by heuristic check and
+ * not by complete conformance check.
+ */
+static bool vli_mmod_fast(u64 *result, u64 *product,
+			  const struct ecc_curve *curve)
+{
+	u64 tmp[2 * ECC_MAX_DIGITS];
+	const u64 *curve_prime = curve->p;
+	const unsigned int ndigits = curve->g.ndigits;
+
+	/* All NIST curves have name prefix 'nist_' */
+	if (strncmp(curve->name, "nist_", 5) != 0) {
+		/* Try to handle Pseudo-Marsenne primes. */
+		if (curve_prime[ndigits - 1] == -1ull) {
+			vli_mmod_special(result, product, curve_prime,
+					 ndigits);
+			return true;
+		} else if (curve_prime[ndigits - 1] == 1ull << 63 &&
+			   curve_prime[ndigits - 2] == 0) {
+			vli_mmod_special2(result, product, curve_prime,
+					  ndigits);
+			return true;
+		}
+		vli_mmod_barrett(result, product, curve_prime, ndigits);
+		return true;
+	}
+
+	switch (ndigits) {
+	case ECC_CURVE_NIST_P192_DIGITS:
+		vli_mmod_fast_192(result, product, curve_prime, tmp);
+		break;
+	case ECC_CURVE_NIST_P256_DIGITS:
+		vli_mmod_fast_256(result, product, curve_prime, tmp);
+		break;
+	case ECC_CURVE_NIST_P384_DIGITS:
+		vli_mmod_fast_384(result, product, curve_prime, tmp);
+		break;
+	case ECC_CURVE_NIST_P521_DIGITS:
+		vli_mmod_fast_521(result, product, curve_prime, tmp);
+		break;
+	default:
+		pr_err("ecc: unsupported digits size!\n");
+		return false;
+	}
+
+	return true;
+}
+
+/* Computes result = (left * right) % mod.
+ * Assumes that mod is big enough curve order.
+ */
+void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
+		       const u64 *mod, unsigned int ndigits)
+{
+	u64 product[ECC_MAX_DIGITS * 2];
+
+	vli_mult(product, left, right, ndigits);
+	vli_mmod_slow(result, product, mod, ndigits);
+}
+EXPORT_SYMBOL(vli_mod_mult_slow);
+
+/* Computes result = (left * right) % curve_prime. */
+static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right,
+			      const struct ecc_curve *curve)
+{
+	u64 product[2 * ECC_MAX_DIGITS];
+
+	vli_mult(product, left, right, curve->g.ndigits);
+	vli_mmod_fast(result, product, curve);
+}
+
+/* Computes result = left^2 % curve_prime. */
+static void vli_mod_square_fast(u64 *result, const u64 *left,
+				const struct ecc_curve *curve)
+{
+	u64 product[2 * ECC_MAX_DIGITS];
+
+	vli_square(product, left, curve->g.ndigits);
+	vli_mmod_fast(result, product, curve);
+}
+
+#define EVEN(vli) (!(vli[0] & 1))
+/* Computes result = (1 / p_input) % mod. All VLIs are the same size.
+ * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
+ * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
+ */
+void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
+			unsigned int ndigits)
+{
+	u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS];
+	u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS];
+	u64 carry;
+	int cmp_result;
+
+	if (vli_is_zero(input, ndigits)) {
+		vli_clear(result, ndigits);
+		return;
+	}
+
+	vli_set(a, input, ndigits);
+	vli_set(b, mod, ndigits);
+	vli_clear(u, ndigits);
+	u[0] = 1;
+	vli_clear(v, ndigits);
+
+	while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) {
+		carry = 0;
+
+		if (EVEN(a)) {
+			vli_rshift1(a, ndigits);
+
+			if (!EVEN(u))
+				carry = vli_add(u, u, mod, ndigits);
+
+			vli_rshift1(u, ndigits);
+			if (carry)
+				u[ndigits - 1] |= 0x8000000000000000ull;
+		} else if (EVEN(b)) {
+			vli_rshift1(b, ndigits);
+
+			if (!EVEN(v))
+				carry = vli_add(v, v, mod, ndigits);
+
+			vli_rshift1(v, ndigits);
+			if (carry)
+				v[ndigits - 1] |= 0x8000000000000000ull;
+		} else if (cmp_result > 0) {
+			vli_sub(a, a, b, ndigits);
+			vli_rshift1(a, ndigits);
+
+			if (vli_cmp(u, v, ndigits) < 0)
+				vli_add(u, u, mod, ndigits);
+
+			vli_sub(u, u, v, ndigits);
+			if (!EVEN(u))
+				carry = vli_add(u, u, mod, ndigits);
+
+			vli_rshift1(u, ndigits);
+			if (carry)
+				u[ndigits - 1] |= 0x8000000000000000ull;
+		} else {
+			vli_sub(b, b, a, ndigits);
+			vli_rshift1(b, ndigits);
+
+			if (vli_cmp(v, u, ndigits) < 0)
+				vli_add(v, v, mod, ndigits);
+
+			vli_sub(v, v, u, ndigits);
+			if (!EVEN(v))
+				carry = vli_add(v, v, mod, ndigits);
+
+			vli_rshift1(v, ndigits);
+			if (carry)
+				v[ndigits - 1] |= 0x8000000000000000ull;
+		}
+	}
+
+	vli_set(result, u, ndigits);
+}
+EXPORT_SYMBOL(vli_mod_inv);
+
+/* ------ Point operations ------ */
+
+/* Returns true if p_point is the point at infinity, false otherwise. */
+bool ecc_point_is_zero(const struct ecc_point *point)
+{
+	return (vli_is_zero(point->x, point->ndigits) &&
+		vli_is_zero(point->y, point->ndigits));
+}
+EXPORT_SYMBOL(ecc_point_is_zero);
+
+/* Point multiplication algorithm using Montgomery's ladder with co-Z
+ * coordinates. From https://eprint.iacr.org/2011/338.pdf
+ */
+
+/* Double in place */
+static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
+					const struct ecc_curve *curve)
+{
+	/* t1 = x, t2 = y, t3 = z */
+	u64 t4[ECC_MAX_DIGITS];
+	u64 t5[ECC_MAX_DIGITS];
+	const u64 *curve_prime = curve->p;
+	const unsigned int ndigits = curve->g.ndigits;
+
+	if (vli_is_zero(z1, ndigits))
+		return;
+
+	/* t4 = y1^2 */
+	vli_mod_square_fast(t4, y1, curve);
+	/* t5 = x1*y1^2 = A */
+	vli_mod_mult_fast(t5, x1, t4, curve);
+	/* t4 = y1^4 */
+	vli_mod_square_fast(t4, t4, curve);
+	/* t2 = y1*z1 = z3 */
+	vli_mod_mult_fast(y1, y1, z1, curve);
+	/* t3 = z1^2 */
+	vli_mod_square_fast(z1, z1, curve);
+
+	/* t1 = x1 + z1^2 */
+	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
+	/* t3 = 2*z1^2 */
+	vli_mod_add(z1, z1, z1, curve_prime, ndigits);
+	/* t3 = x1 - z1^2 */
+	vli_mod_sub(z1, x1, z1, curve_prime, ndigits);
+	/* t1 = x1^2 - z1^4 */
+	vli_mod_mult_fast(x1, x1, z1, curve);
+
+	/* t3 = 2*(x1^2 - z1^4) */
+	vli_mod_add(z1, x1, x1, curve_prime, ndigits);
+	/* t1 = 3*(x1^2 - z1^4) */
+	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
+	if (vli_test_bit(x1, 0)) {
+		u64 carry = vli_add(x1, x1, curve_prime, ndigits);
+
+		vli_rshift1(x1, ndigits);
+		x1[ndigits - 1] |= carry << 63;
+	} else {
+		vli_rshift1(x1, ndigits);
+	}
+	/* t1 = 3/2*(x1^2 - z1^4) = B */
+
+	/* t3 = B^2 */
+	vli_mod_square_fast(z1, x1, curve);
+	/* t3 = B^2 - A */
+	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
+	/* t3 = B^2 - 2A = x3 */
+	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
+	/* t5 = A - x3 */
+	vli_mod_sub(t5, t5, z1, curve_prime, ndigits);
+	/* t1 = B * (A - x3) */
+	vli_mod_mult_fast(x1, x1, t5, curve);
+	/* t4 = B * (A - x3) - y1^4 = y3 */
+	vli_mod_sub(t4, x1, t4, curve_prime, ndigits);
+
+	vli_set(x1, z1, ndigits);
+	vli_set(z1, y1, ndigits);
+	vli_set(y1, t4, ndigits);
+}
+
+/* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
+static void apply_z(u64 *x1, u64 *y1, u64 *z, const struct ecc_curve *curve)
+{
+	u64 t1[ECC_MAX_DIGITS];
+
+	vli_mod_square_fast(t1, z, curve);		/* z^2 */
+	vli_mod_mult_fast(x1, x1, t1, curve);	/* x1 * z^2 */
+	vli_mod_mult_fast(t1, t1, z, curve);	/* z^3 */
+	vli_mod_mult_fast(y1, y1, t1, curve);	/* y1 * z^3 */
+}
+
+/* P = (x1, y1) => 2P, (x2, y2) => P' */
+static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
+				u64 *p_initial_z, const struct ecc_curve *curve)
+{
+	u64 z[ECC_MAX_DIGITS];
+	const unsigned int ndigits = curve->g.ndigits;
+
+	vli_set(x2, x1, ndigits);
+	vli_set(y2, y1, ndigits);
+
+	vli_clear(z, ndigits);
+	z[0] = 1;
+
+	if (p_initial_z)
+		vli_set(z, p_initial_z, ndigits);
+
+	apply_z(x1, y1, z, curve);
+
+	ecc_point_double_jacobian(x1, y1, z, curve);
+
+	apply_z(x2, y2, z, curve);
+}
+
+/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
+ * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
+ * or P => P', Q => P + Q
+ */
+static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
+			const struct ecc_curve *curve)
+{
+	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
+	u64 t5[ECC_MAX_DIGITS];
+	const u64 *curve_prime = curve->p;
+	const unsigned int ndigits = curve->g.ndigits;
+
+	/* t5 = x2 - x1 */
+	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
+	/* t5 = (x2 - x1)^2 = A */
+	vli_mod_square_fast(t5, t5, curve);
+	/* t1 = x1*A = B */
+	vli_mod_mult_fast(x1, x1, t5, curve);
+	/* t3 = x2*A = C */
+	vli_mod_mult_fast(x2, x2, t5, curve);
+	/* t4 = y2 - y1 */
+	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
+	/* t5 = (y2 - y1)^2 = D */
+	vli_mod_square_fast(t5, y2, curve);
+
+	/* t5 = D - B */
+	vli_mod_sub(t5, t5, x1, curve_prime, ndigits);
+	/* t5 = D - B - C = x3 */
+	vli_mod_sub(t5, t5, x2, curve_prime, ndigits);
+	/* t3 = C - B */
+	vli_mod_sub(x2, x2, x1, curve_prime, ndigits);
+	/* t2 = y1*(C - B) */
+	vli_mod_mult_fast(y1, y1, x2, curve);
+	/* t3 = B - x3 */
+	vli_mod_sub(x2, x1, t5, curve_prime, ndigits);
+	/* t4 = (y2 - y1)*(B - x3) */
+	vli_mod_mult_fast(y2, y2, x2, curve);
+	/* t4 = y3 */
+	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
+
+	vli_set(x2, t5, ndigits);
+}
+
+/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
+ * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
+ * or P => P - Q, Q => P + Q
+ */
+static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
+			const struct ecc_curve *curve)
+{
+	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
+	u64 t5[ECC_MAX_DIGITS];
+	u64 t6[ECC_MAX_DIGITS];
+	u64 t7[ECC_MAX_DIGITS];
+	const u64 *curve_prime = curve->p;
+	const unsigned int ndigits = curve->g.ndigits;
+
+	/* t5 = x2 - x1 */
+	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
+	/* t5 = (x2 - x1)^2 = A */
+	vli_mod_square_fast(t5, t5, curve);
+	/* t1 = x1*A = B */
+	vli_mod_mult_fast(x1, x1, t5, curve);
+	/* t3 = x2*A = C */
+	vli_mod_mult_fast(x2, x2, t5, curve);
+	/* t4 = y2 + y1 */
+	vli_mod_add(t5, y2, y1, curve_prime, ndigits);
+	/* t4 = y2 - y1 */
+	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
+
+	/* t6 = C - B */
+	vli_mod_sub(t6, x2, x1, curve_prime, ndigits);
+	/* t2 = y1 * (C - B) */
+	vli_mod_mult_fast(y1, y1, t6, curve);
+	/* t6 = B + C */
+	vli_mod_add(t6, x1, x2, curve_prime, ndigits);
+	/* t3 = (y2 - y1)^2 */
+	vli_mod_square_fast(x2, y2, curve);
+	/* t3 = x3 */
+	vli_mod_sub(x2, x2, t6, curve_prime, ndigits);
+
+	/* t7 = B - x3 */
+	vli_mod_sub(t7, x1, x2, curve_prime, ndigits);
+	/* t4 = (y2 - y1)*(B - x3) */
+	vli_mod_mult_fast(y2, y2, t7, curve);
+	/* t4 = y3 */
+	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
+
+	/* t7 = (y2 + y1)^2 = F */
+	vli_mod_square_fast(t7, t5, curve);
+	/* t7 = x3' */
+	vli_mod_sub(t7, t7, t6, curve_prime, ndigits);
+	/* t6 = x3' - B */
+	vli_mod_sub(t6, t7, x1, curve_prime, ndigits);
+	/* t6 = (y2 + y1)*(x3' - B) */
+	vli_mod_mult_fast(t6, t6, t5, curve);
+	/* t2 = y3' */
+	vli_mod_sub(y1, t6, y1, curve_prime, ndigits);
+
+	vli_set(x1, t7, ndigits);
+}
+
+static void ecc_point_mult(struct ecc_point *result,
+			   const struct ecc_point *point, const u64 *scalar,
+			   u64 *initial_z, const struct ecc_curve *curve,
+			   unsigned int ndigits)
+{
+	/* R0 and R1 */
+	u64 rx[2][ECC_MAX_DIGITS];
+	u64 ry[2][ECC_MAX_DIGITS];
+	u64 z[ECC_MAX_DIGITS];
+	u64 sk[2][ECC_MAX_DIGITS];
+	u64 *curve_prime = curve->p;
+	int i, nb;
+	int num_bits;
+	int carry;
+
+	carry = vli_add(sk[0], scalar, curve->n, ndigits);
+	vli_add(sk[1], sk[0], curve->n, ndigits);
+	scalar = sk[!carry];
+	if (curve->nbits == 521)	/* NIST P521 */
+		num_bits = curve->nbits + 2;
+	else
+		num_bits = sizeof(u64) * ndigits * 8 + 1;
+
+	vli_set(rx[1], point->x, ndigits);
+	vli_set(ry[1], point->y, ndigits);
+
+	xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve);
+
+	for (i = num_bits - 2; i > 0; i--) {
+		nb = !vli_test_bit(scalar, i);
+		xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
+		xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
+	}
+
+	nb = !vli_test_bit(scalar, 0);
+	xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
+
+	/* Find final 1/Z value. */
+	/* X1 - X0 */
+	vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits);
+	/* Yb * (X1 - X0) */
+	vli_mod_mult_fast(z, z, ry[1 - nb], curve);
+	/* xP * Yb * (X1 - X0) */
+	vli_mod_mult_fast(z, z, point->x, curve);
+
+	/* 1 / (xP * Yb * (X1 - X0)) */
+	vli_mod_inv(z, z, curve_prime, point->ndigits);
+
+	/* yP / (xP * Yb * (X1 - X0)) */
+	vli_mod_mult_fast(z, z, point->y, curve);
+	/* Xb * yP / (xP * Yb * (X1 - X0)) */
+	vli_mod_mult_fast(z, z, rx[1 - nb], curve);
+	/* End 1/Z calculation */
+
+	xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
+
+	apply_z(rx[0], ry[0], z, curve);
+
+	vli_set(result->x, rx[0], ndigits);
+	vli_set(result->y, ry[0], ndigits);
+}
+
+/* Computes R = P + Q mod p */
+static void ecc_point_add(const struct ecc_point *result,
+		   const struct ecc_point *p, const struct ecc_point *q,
+		   const struct ecc_curve *curve)
+{
+	u64 z[ECC_MAX_DIGITS];
+	u64 px[ECC_MAX_DIGITS];
+	u64 py[ECC_MAX_DIGITS];
+	unsigned int ndigits = curve->g.ndigits;
+
+	vli_set(result->x, q->x, ndigits);
+	vli_set(result->y, q->y, ndigits);
+	vli_mod_sub(z, result->x, p->x, curve->p, ndigits);
+	vli_set(px, p->x, ndigits);
+	vli_set(py, p->y, ndigits);
+	xycz_add(px, py, result->x, result->y, curve);
+	vli_mod_inv(z, z, curve->p, ndigits);
+	apply_z(result->x, result->y, z, curve);
+}
+
+/* Computes R = u1P + u2Q mod p using Shamir's trick.
+ * Based on: Kenneth MacKay's micro-ecc (2014).
+ */
+void ecc_point_mult_shamir(const struct ecc_point *result,
+			   const u64 *u1, const struct ecc_point *p,
+			   const u64 *u2, const struct ecc_point *q,
+			   const struct ecc_curve *curve)
+{
+	u64 z[ECC_MAX_DIGITS];
+	u64 sump[2][ECC_MAX_DIGITS];
+	u64 *rx = result->x;
+	u64 *ry = result->y;
+	unsigned int ndigits = curve->g.ndigits;
+	unsigned int num_bits;
+	struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits);
+	const struct ecc_point *points[4];
+	const struct ecc_point *point;
+	unsigned int idx;
+	int i;
+
+	ecc_point_add(&sum, p, q, curve);
+	points[0] = NULL;
+	points[1] = p;
+	points[2] = q;
+	points[3] = &sum;
+
+	num_bits = max(vli_num_bits(u1, ndigits), vli_num_bits(u2, ndigits));
+	i = num_bits - 1;
+	idx = !!vli_test_bit(u1, i);
+	idx |= (!!vli_test_bit(u2, i)) << 1;
+	point = points[idx];
+
+	vli_set(rx, point->x, ndigits);
+	vli_set(ry, point->y, ndigits);
+	vli_clear(z + 1, ndigits - 1);
+	z[0] = 1;
+
+	for (--i; i >= 0; i--) {
+		ecc_point_double_jacobian(rx, ry, z, curve);
+		idx = !!vli_test_bit(u1, i);
+		idx |= (!!vli_test_bit(u2, i)) << 1;
+		point = points[idx];
+		if (point) {
+			u64 tx[ECC_MAX_DIGITS];
+			u64 ty[ECC_MAX_DIGITS];
+			u64 tz[ECC_MAX_DIGITS];
+
+			vli_set(tx, point->x, ndigits);
+			vli_set(ty, point->y, ndigits);
+			apply_z(tx, ty, z, curve);
+			vli_mod_sub(tz, rx, tx, curve->p, ndigits);
+			xycz_add(tx, ty, rx, ry, curve);
+			vli_mod_mult_fast(z, z, tz, curve);
+		}
+	}
+	vli_mod_inv(z, z, curve->p, ndigits);
+	apply_z(rx, ry, z, curve);
+}
+EXPORT_SYMBOL(ecc_point_mult_shamir);
+
+/*
+ * This function performs checks equivalent to Appendix A.4.2 of FIPS 186-5.
+ * Whereas A.4.2 results in an integer in the interval [1, n-1], this function
+ * ensures that the integer is in the range of [2, n-3]. We are slightly
+ * stricter because of the currently used scalar multiplication algorithm.
+ */
+static int __ecc_is_key_valid(const struct ecc_curve *curve,
+			      const u64 *private_key, unsigned int ndigits)
+{
+	u64 one[ECC_MAX_DIGITS] = { 1, };
+	u64 res[ECC_MAX_DIGITS];
+
+	if (!private_key)
+		return -EINVAL;
+
+	if (curve->g.ndigits != ndigits)
+		return -EINVAL;
+
+	/* Make sure the private key is in the range [2, n-3]. */
+	if (vli_cmp(one, private_key, ndigits) != -1)
+		return -EINVAL;
+	vli_sub(res, curve->n, one, ndigits);
+	vli_sub(res, res, one, ndigits);
+	if (vli_cmp(res, private_key, ndigits) != 1)
+		return -EINVAL;
+
+	return 0;
+}
+
+int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
+		     const u64 *private_key, unsigned int private_key_len)
+{
+	int nbytes;
+	const struct ecc_curve *curve = ecc_get_curve(curve_id);
+
+	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
+
+	if (private_key_len != nbytes)
+		return -EINVAL;
+
+	return __ecc_is_key_valid(curve, private_key, ndigits);
+}
+EXPORT_SYMBOL(ecc_is_key_valid);
+
+int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits,
+		     const u64 *private_key, u64 *public_key)
+{
+	int ret = 0;
+	struct ecc_point *pk;
+	const struct ecc_curve *curve = ecc_get_curve(curve_id);
+
+	if (!private_key) {
+		ret = -EINVAL;
+		goto out;
+	}
+
+	pk = ecc_alloc_point(ndigits);
+	if (!pk) {
+		ret = -ENOMEM;
+		goto out;
+	}
+
+	ecc_point_mult(pk, &curve->g, private_key, NULL, curve, ndigits);
+
+	/* SP800-56A rev 3 5.6.2.1.3 key check */
+	if (ecc_is_pubkey_valid_full(curve, pk)) {
+		ret = -EAGAIN;
+		goto err_free_point;
+	}
+
+	ecc_swap_digits(pk->x, public_key, ndigits);
+	ecc_swap_digits(pk->y, &public_key[ndigits], ndigits);
+
+err_free_point:
+	ecc_free_point(pk);
+out:
+	return ret;
+}
+EXPORT_SYMBOL(ecc_make_pub_key);
+
+/* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */
+int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
+				struct ecc_point *pk)
+{
+	u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS];
+
+	if (WARN_ON(pk->ndigits != curve->g.ndigits))
+		return -EINVAL;
+
+	/* Check 1: Verify key is not the zero point. */
+	if (ecc_point_is_zero(pk))
+		return -EINVAL;
+
+	/* Check 2: Verify key is in the range [1, p-1]. */
+	if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1)
+		return -EINVAL;
+	if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1)
+		return -EINVAL;
+
+	/* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */
+	vli_mod_square_fast(yy, pk->y, curve); /* y^2 */
+	vli_mod_square_fast(xxx, pk->x, curve); /* x^2 */
+	vli_mod_mult_fast(xxx, xxx, pk->x, curve); /* x^3 */
+	vli_mod_mult_fast(w, curve->a, pk->x, curve); /* a·x */
+	vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a·x + b */
+	vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a·x + b */
+	if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */
+		return -EINVAL;
+
+	return 0;
+}
+EXPORT_SYMBOL(ecc_is_pubkey_valid_partial);
+
+/* SP800-56A section 5.6.2.3.3 full verification */
+int ecc_is_pubkey_valid_full(const struct ecc_curve *curve,
+			     struct ecc_point *pk)
+{
+	struct ecc_point *nQ;
+
+	/* Checks 1 through 3 */
+	int ret = ecc_is_pubkey_valid_partial(curve, pk);
+
+	if (ret)
+		return ret;
+
+	/* Check 4: Verify that nQ is the zero point. */
+	nQ = ecc_alloc_point(pk->ndigits);
+	if (!nQ)
+		return -ENOMEM;
+
+	ecc_point_mult(nQ, pk, curve->n, NULL, curve, pk->ndigits);
+	if (!ecc_point_is_zero(nQ))
+		ret = -EINVAL;
+
+	ecc_free_point(nQ);
+
+	return ret;
+}
+EXPORT_SYMBOL(ecc_is_pubkey_valid_full);
+
+int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
+			      const u64 *private_key, const u64 *public_key,
+			      u64 *secret)
+{
+	int ret = 0;
+	struct ecc_point *product, *pk;
+	u64 rand_z[ECC_MAX_DIGITS];
+	unsigned int nbytes;
+	const struct ecc_curve *curve = ecc_get_curve(curve_id);
+
+	if (!private_key || !public_key || ndigits > ARRAY_SIZE(rand_z)) {
+		ret = -EINVAL;
+		goto out;
+	}
+
+	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
+
+	get_random_bytes(rand_z, nbytes);
+
+	pk = ecc_alloc_point(ndigits);
+	if (!pk) {
+		ret = -ENOMEM;
+		goto out;
+	}
+
+	ecc_swap_digits(public_key, pk->x, ndigits);
+	ecc_swap_digits(&public_key[ndigits], pk->y, ndigits);
+	ret = ecc_is_pubkey_valid_partial(curve, pk);
+	if (ret)
+		goto err_alloc_product;
+
+	product = ecc_alloc_point(ndigits);
+	if (!product) {
+		ret = -ENOMEM;
+		goto err_alloc_product;
+	}
+
+	ecc_point_mult(product, pk, private_key, rand_z, curve, ndigits);
+
+	if (ecc_point_is_zero(product)) {
+		ret = -EFAULT;
+		goto err_validity;
+	}
+
+	ecc_swap_digits(product->x, secret, ndigits);
+
+err_validity:
+	memzero_explicit(rand_z, sizeof(rand_z));
+	ecc_free_point(product);
+err_alloc_product:
+	ecc_free_point(pk);
+out:
+	return ret;
+}
+EXPORT_SYMBOL(crypto_ecdh_shared_secret);
+
+MODULE_LICENSE("Dual BSD/GPL");
diff --git a/crypto/ecc_curve_defs.h b/crypto/ecc_curve_defs.h
new file mode 100644
index 0000000000..0ecade7d02
--- /dev/null
+++ b/crypto/ecc_curve_defs.h
@@ -0,0 +1,155 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _CRYTO_ECC_CURVE_DEFS_H
+#define _CRYTO_ECC_CURVE_DEFS_H
+
+/* NIST P-192: a = p - 3 */
+static u64 nist_p192_g_x[] = { 0xF4FF0AFD82FF1012ull, 0x7CBF20EB43A18800ull,
+				0x188DA80EB03090F6ull };
+static u64 nist_p192_g_y[] = { 0x73F977A11E794811ull, 0x631011ED6B24CDD5ull,
+				0x07192B95FFC8DA78ull };
+static u64 nist_p192_p[] = { 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFEull,
+				0xFFFFFFFFFFFFFFFFull };
+static u64 nist_p192_n[] = { 0x146BC9B1B4D22831ull, 0xFFFFFFFF99DEF836ull,
+				0xFFFFFFFFFFFFFFFFull };
+static u64 nist_p192_a[] = { 0xFFFFFFFFFFFFFFFCull, 0xFFFFFFFFFFFFFFFEull,
+				0xFFFFFFFFFFFFFFFFull };
+static u64 nist_p192_b[] = { 0xFEB8DEECC146B9B1ull, 0x0FA7E9AB72243049ull,
+				0x64210519E59C80E7ull };
+static struct ecc_curve nist_p192 = {
+	.name = "nist_192",
+	.nbits = 192,
+	.g = {
+		.x = nist_p192_g_x,
+		.y = nist_p192_g_y,
+		.ndigits = 3,
+	},
+	.p = nist_p192_p,
+	.n = nist_p192_n,
+	.a = nist_p192_a,
+	.b = nist_p192_b
+};
+
+/* NIST P-256: a = p - 3 */
+static u64 nist_p256_g_x[] = { 0xF4A13945D898C296ull, 0x77037D812DEB33A0ull,
+				0xF8BCE6E563A440F2ull, 0x6B17D1F2E12C4247ull };
+static u64 nist_p256_g_y[] = { 0xCBB6406837BF51F5ull, 0x2BCE33576B315ECEull,
+				0x8EE7EB4A7C0F9E16ull, 0x4FE342E2FE1A7F9Bull };
+static u64 nist_p256_p[] = { 0xFFFFFFFFFFFFFFFFull, 0x00000000FFFFFFFFull,
+				0x0000000000000000ull, 0xFFFFFFFF00000001ull };
+static u64 nist_p256_n[] = { 0xF3B9CAC2FC632551ull, 0xBCE6FAADA7179E84ull,
+				0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFF00000000ull };
+static u64 nist_p256_a[] = { 0xFFFFFFFFFFFFFFFCull, 0x00000000FFFFFFFFull,
+				0x0000000000000000ull, 0xFFFFFFFF00000001ull };
+static u64 nist_p256_b[] = { 0x3BCE3C3E27D2604Bull, 0x651D06B0CC53B0F6ull,
+				0xB3EBBD55769886BCull, 0x5AC635D8AA3A93E7ull };
+static struct ecc_curve nist_p256 = {
+	.name = "nist_256",
+	.nbits = 256,
+	.g = {
+		.x = nist_p256_g_x,
+		.y = nist_p256_g_y,
+		.ndigits = 4,
+	},
+	.p = nist_p256_p,
+	.n = nist_p256_n,
+	.a = nist_p256_a,
+	.b = nist_p256_b
+};
+
+/* NIST P-384 */
+static u64 nist_p384_g_x[] = { 0x3A545E3872760AB7ull, 0x5502F25DBF55296Cull,
+				0x59F741E082542A38ull, 0x6E1D3B628BA79B98ull,
+				0x8Eb1C71EF320AD74ull, 0xAA87CA22BE8B0537ull };
+static u64 nist_p384_g_y[] = { 0x7A431D7C90EA0E5Full, 0x0A60B1CE1D7E819Dull,
+				0xE9DA3113B5F0B8C0ull, 0xF8F41DBD289A147Cull,
+				0x5D9E98BF9292DC29ull, 0x3617DE4A96262C6Full };
+static u64 nist_p384_p[] = { 0x00000000FFFFFFFFull, 0xFFFFFFFF00000000ull,
+				0xFFFFFFFFFFFFFFFEull, 0xFFFFFFFFFFFFFFFFull,
+				0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull };
+static u64 nist_p384_n[] = { 0xECEC196ACCC52973ull, 0x581A0DB248B0A77Aull,
+				0xC7634D81F4372DDFull, 0xFFFFFFFFFFFFFFFFull,
+				0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull };
+static u64 nist_p384_a[] = { 0x00000000FFFFFFFCull, 0xFFFFFFFF00000000ull,
+				0xFFFFFFFFFFFFFFFEull, 0xFFFFFFFFFFFFFFFFull,
+				0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull };
+static u64 nist_p384_b[] = { 0x2a85c8edd3ec2aefull, 0xc656398d8a2ed19dull,
+				0x0314088f5013875aull, 0x181d9c6efe814112ull,
+				0x988e056be3f82d19ull, 0xb3312fa7e23ee7e4ull };
+static struct ecc_curve nist_p384 = {
+	.name = "nist_384",
+	.nbits = 384,
+	.g = {
+		.x = nist_p384_g_x,
+		.y = nist_p384_g_y,
+		.ndigits = 6,
+	},
+	.p = nist_p384_p,
+	.n = nist_p384_n,
+	.a = nist_p384_a,
+	.b = nist_p384_b
+};
+
+/* NIST P-521 */
+static u64 nist_p521_g_x[] = { 0xf97e7e31c2e5bd66ull, 0x3348b3c1856a429bull,
+				0xfe1dc127a2ffa8deull, 0xa14b5e77efe75928ull,
+				0xf828af606b4d3dbaull, 0x9c648139053fb521ull,
+				0x9e3ecb662395b442ull, 0x858e06b70404e9cdull,
+				0xc6ull };
+static u64 nist_p521_g_y[] = { 0x88be94769fd16650ull, 0x353c7086a272c240ull,
+				0xc550b9013fad0761ull, 0x97ee72995ef42640ull,
+				0x17afbd17273e662cull, 0x98f54449579b4468ull,
+				0x5c8a5fb42c7d1bd9ull, 0x39296a789a3bc004ull,
+				0x118ull };
+static u64 nist_p521_p[] = { 0xffffffffffffffffull, 0xffffffffffffffffull,
+				0xffffffffffffffffull, 0xffffffffffffffffull,
+				0xffffffffffffffffull, 0xffffffffffffffffull,
+				0xffffffffffffffffull, 0xffffffffffffffffull,
+				0x1ffull };
+static u64 nist_p521_n[] = { 0xbb6fb71e91386409ull, 0x3bb5c9b8899c47aeull,
+				0x7fcc0148f709a5d0ull, 0x51868783bf2f966bull,
+				0xfffffffffffffffaull, 0xffffffffffffffffull,
+				0xffffffffffffffffull, 0xffffffffffffffffull,
+				0x1ffull };
+static u64 nist_p521_a[] = { 0xfffffffffffffffcull, 0xffffffffffffffffull,
+				0xffffffffffffffffull, 0xffffffffffffffffull,
+				0xffffffffffffffffull, 0xffffffffffffffffull,
+				0xffffffffffffffffull, 0xffffffffffffffffull,
+				0x1ffull };
+static u64 nist_p521_b[] = { 0xef451fd46b503f00ull, 0x3573df883d2c34f1ull,
+				0x1652c0bd3bb1bf07ull, 0x56193951ec7e937bull,
+				0xb8b489918ef109e1ull, 0xa2da725b99b315f3ull,
+				0x929a21a0b68540eeull, 0x953eb9618e1c9a1full,
+				0x051ull };
+static struct ecc_curve nist_p521 = {
+	.name = "nist_521",
+	.nbits = 521,
+	.g = {
+		.x = nist_p521_g_x,
+		.y = nist_p521_g_y,
+		.ndigits = 9,
+	},
+	.p = nist_p521_p,
+	.n = nist_p521_n,
+	.a = nist_p521_a,
+	.b = nist_p521_b
+};
+
+/* curve25519 */
+static u64 curve25519_g_x[] = { 0x0000000000000009, 0x0000000000000000,
+				0x0000000000000000, 0x0000000000000000 };
+static u64 curve25519_p[] = { 0xffffffffffffffed, 0xffffffffffffffff,
+				0xffffffffffffffff, 0x7fffffffffffffff };
+static u64 curve25519_a[] = { 0x000000000001DB41, 0x0000000000000000,
+				0x0000000000000000, 0x0000000000000000 };
+static const struct ecc_curve ecc_25519 = {
+	.name = "curve25519",
+	.nbits = 255,
+	.g = {
+		.x = curve25519_g_x,
+		.ndigits = 4,
+	},
+	.p = curve25519_p,
+	.a = curve25519_a,
+};
+
+#endif
diff --git a/include/crypto/ecc_curve.h b/include/crypto/ecc_curve.h
new file mode 100644
index 0000000000..7d90c5e822
--- /dev/null
+++ b/include/crypto/ecc_curve.h
@@ -0,0 +1,62 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/* Copyright (c) 2021 HiSilicon */
+
+#ifndef _CRYTO_ECC_CURVE_H
+#define _CRYTO_ECC_CURVE_H
+
+#include <linux/types.h>
+
+/**
+ * struct ecc_point - elliptic curve point in affine coordinates
+ *
+ * @x:		X coordinate in vli form.
+ * @y:		Y coordinate in vli form.
+ * @ndigits:	Length of vlis in u64 qwords.
+ */
+struct ecc_point {
+	u64 *x;
+	u64 *y;
+	u8 ndigits;
+};
+
+/**
+ * struct ecc_curve - definition of elliptic curve
+ *
+ * @name:	Short name of the curve.
+ * @nbits:	The number of bits of a curve.
+ * @g:		Generator point of the curve.
+ * @p:		Prime number, if Barrett's reduction is used for this curve
+ *		pre-calculated value 'mu' is appended to the @p after ndigits.
+ *		Use of Barrett's reduction is heuristically determined in
+ *		vli_mmod_fast().
+ * @n:		Order of the curve group.
+ * @a:		Curve parameter a.
+ * @b:		Curve parameter b.
+ */
+struct ecc_curve {
+	char *name;
+	u32 nbits;
+	struct ecc_point g;
+	u64 *p;
+	u64 *n;
+	u64 *a;
+	u64 *b;
+};
+
+/**
+ * ecc_get_curve() - get elliptic curve;
+ * @curve_id:           Curves IDs:
+ *                      defined in 'include/crypto/ecdh.h';
+ *
+ * Returns curve if get curve succssful, NULL otherwise
+ */
+const struct ecc_curve *ecc_get_curve(unsigned int curve_id);
+
+/**
+ * ecc_get_curve25519() - get curve25519 curve;
+ *
+ * Returns curve25519
+ */
+const struct ecc_curve *ecc_get_curve25519(void);
+
+#endif
diff --git a/include/crypto/ecdh.h b/include/crypto/ecdh.h
new file mode 100644
index 0000000000..9784ecdd2f
--- /dev/null
+++ b/include/crypto/ecdh.h
@@ -0,0 +1,83 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ * ECDH params to be used with kpp API
+ *
+ * Copyright (c) 2016, Intel Corporation
+ * Authors: Salvatore Benedetto <salvatore.benedetto@intel.com>
+ */
+#ifndef _CRYPTO_ECDH_
+#define _CRYPTO_ECDH_
+
+/**
+ * DOC: ECDH Helper Functions
+ *
+ * To use ECDH with the KPP cipher API, the following data structure and
+ * functions should be used.
+ *
+ * The ECC curves known to the ECDH implementation are specified in this
+ * header file.
+ *
+ * To use ECDH with KPP, the following functions should be used to operate on
+ * an ECDH private key. The packet private key that can be set with
+ * the KPP API function call of crypto_kpp_set_secret.
+ */
+
+/* Curves IDs */
+#define ECC_CURVE_NIST_P192	0x0001
+#define ECC_CURVE_NIST_P256	0x0002
+#define ECC_CURVE_NIST_P384	0x0003
+#define ECC_CURVE_NIST_P521	0x0004
+
+/**
+ * struct ecdh - define an ECDH private key
+ *
+ * @key:	Private ECDH key
+ * @key_size:	Size of the private ECDH key
+ */
+struct ecdh {
+	char *key;
+	unsigned short key_size;
+};
+
+/**
+ * crypto_ecdh_key_len() - Obtain the size of the private ECDH key
+ * @params:	private ECDH key
+ *
+ * This function returns the packet ECDH key size. A caller can use that
+ * with the provided ECDH private key reference to obtain the required
+ * memory size to hold a packet key.
+ *
+ * Return: size of the key in bytes
+ */
+unsigned int crypto_ecdh_key_len(const struct ecdh *params);
+
+/**
+ * crypto_ecdh_encode_key() - encode the private key
+ * @buf:	Buffer allocated by the caller to hold the packet ECDH
+ *		private key. The buffer should be at least crypto_ecdh_key_len
+ *		bytes in size.
+ * @len:	Length of the packet private key buffer
+ * @p:		Buffer with the caller-specified private key
+ *
+ * The ECDH implementations operate on a packet representation of the private
+ * key.
+ *
+ * Return:	-EINVAL if buffer has insufficient size, 0 on success
+ */
+int crypto_ecdh_encode_key(char *buf, unsigned int len, const struct ecdh *p);
+
+/**
+ * crypto_ecdh_decode_key() - decode a private key
+ * @buf:	Buffer holding a packet key that should be decoded
+ * @len:	Length of the packet private key buffer
+ * @p:		Buffer allocated by the caller that is filled with the
+ *		unpacked ECDH private key.
+ *
+ * The unpacking obtains the private key by pointing @p to the correct location
+ * in @buf. Thus, both pointers refer to the same memory.
+ *
+ * Return:	-EINVAL if buffer has insufficient size, 0 on success
+ */
+int crypto_ecdh_decode_key(const char *buf, unsigned int len, struct ecdh *p);
+
+#endif
diff --git a/include/crypto/internal/ecc.h b/include/crypto/internal/ecc.h
new file mode 100644
index 0000000000..f191491cc0
--- /dev/null
+++ b/include/crypto/internal/ecc.h
@@ -0,0 +1,278 @@
+/*
+ * Copyright (c) 2013, Kenneth MacKay
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met:
+ *  * Redistributions of source code must retain the above copyright
+ *   notice, this list of conditions and the following disclaimer.
+ *  * Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+#ifndef _CRYPTO_ECC_H
+#define _CRYPTO_ECC_H
+
+#include <crypto/ecc_curve.h>
+#include <asm/unaligned.h>
+
+/* One digit is u64 qword. */
+#define ECC_CURVE_NIST_P192_DIGITS  3
+#define ECC_CURVE_NIST_P256_DIGITS  4
+#define ECC_CURVE_NIST_P384_DIGITS  6
+#define ECC_CURVE_NIST_P521_DIGITS  9
+#define ECC_MAX_DIGITS              DIV_ROUND_UP(521, 64) /* NIST P521 */
+
+#define ECC_DIGITS_TO_BYTES_SHIFT 3
+
+#define ECC_MAX_BYTES (ECC_MAX_DIGITS << ECC_DIGITS_TO_BYTES_SHIFT)
+
+#define ECC_POINT_INIT(x, y, ndigits)	(struct ecc_point) { x, y, ndigits }
+
+/**
+ * ecc_swap_digits() - Copy ndigits from big endian array to native array
+ * @in:       Input array
+ * @out:      Output array
+ * @ndigits:  Number of digits to copy
+ */
+static inline void ecc_swap_digits(const void *in, u64 *out, unsigned int ndigits)
+{
+	const __be64 *src = (__force __be64 *)in;
+	int i;
+
+	for (i = 0; i < ndigits; i++)
+		out[i] = get_unaligned_be64(&src[ndigits - 1 - i]);
+}
+
+/**
+ * ecc_digits_from_bytes() - Create ndigits-sized digits array from byte array
+ * @in:       Input byte array
+ * @nbytes    Size of input byte array
+ * @out       Output digits array
+ * @ndigits:  Number of digits to create from byte array
+ */
+void ecc_digits_from_bytes(const u8 *in, unsigned int nbytes,
+			   u64 *out, unsigned int ndigits);
+
+/**
+ * ecc_is_key_valid() - Validate a given ECDH private key
+ *
+ * @curve_id:		id representing the curve to use
+ * @ndigits:		curve's number of digits
+ * @private_key:	private key to be used for the given curve
+ * @private_key_len:	private key length
+ *
+ * Returns 0 if the key is acceptable, a negative value otherwise
+ */
+int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
+		     const u64 *private_key, unsigned int private_key_len);
+
+/**
+ * ecc_make_pub_key() - Compute an ECC public key
+ *
+ * @curve_id:		id representing the curve to use
+ * @ndigits:		curve's number of digits
+ * @private_key:	pregenerated private key for the given curve
+ * @public_key:		buffer for storing the generated public key
+ *
+ * Returns 0 if the public key was generated successfully, a negative value
+ * if an error occurred.
+ */
+int ecc_make_pub_key(const unsigned int curve_id, unsigned int ndigits,
+		     const u64 *private_key, u64 *public_key);
+
+/**
+ * crypto_ecdh_shared_secret() - Compute a shared secret
+ *
+ * @curve_id:		id representing the curve to use
+ * @ndigits:		curve's number of digits
+ * @private_key:	private key of part A
+ * @public_key:		public key of counterpart B
+ * @secret:		buffer for storing the calculated shared secret
+ *
+ * Note: It is recommended that you hash the result of crypto_ecdh_shared_secret
+ * before using it for symmetric encryption or HMAC.
+ *
+ * Returns 0 if the shared secret was generated successfully, a negative value
+ * if an error occurred.
+ */
+int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
+			      const u64 *private_key, const u64 *public_key,
+			      u64 *secret);
+
+/**
+ * ecc_is_pubkey_valid_partial() - Partial public key validation
+ *
+ * @curve:		elliptic curve domain parameters
+ * @pk:			public key as a point
+ *
+ * Valdiate public key according to SP800-56A section 5.6.2.3.4 ECC Partial
+ * Public-Key Validation Routine.
+ *
+ * Note: There is no check that the public key is in the correct elliptic curve
+ * subgroup.
+ *
+ * Return: 0 if validation is successful, -EINVAL if validation is failed.
+ */
+int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
+				struct ecc_point *pk);
+
+/**
+ * ecc_is_pubkey_valid_full() - Full public key validation
+ *
+ * @curve:		elliptic curve domain parameters
+ * @pk:			public key as a point
+ *
+ * Valdiate public key according to SP800-56A section 5.6.2.3.3 ECC Full
+ * Public-Key Validation Routine.
+ *
+ * Return: 0 if validation is successful, -EINVAL if validation is failed.
+ */
+int ecc_is_pubkey_valid_full(const struct ecc_curve *curve,
+			     struct ecc_point *pk);
+
+/**
+ * vli_is_zero() - Determine is vli is zero
+ *
+ * @vli:		vli to check.
+ * @ndigits:		length of the @vli
+ */
+bool vli_is_zero(const u64 *vli, unsigned int ndigits);
+
+/**
+ * vli_cmp() - compare left and right vlis
+ *
+ * @left:		vli
+ * @right:		vli
+ * @ndigits:		length of both vlis
+ *
+ * Returns sign of @left - @right, i.e. -1 if @left < @right,
+ * 0 if @left == @right, 1 if @left > @right.
+ */
+int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits);
+
+/**
+ * vli_sub() - Subtracts right from left
+ *
+ * @result:		where to write result
+ * @left:		vli
+ * @right		vli
+ * @ndigits:		length of all vlis
+ *
+ * Note: can modify in-place.
+ *
+ * Return: carry bit.
+ */
+u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
+	    unsigned int ndigits);
+
+/**
+ * vli_from_be64() - Load vli from big-endian u64 array
+ *
+ * @dest:		destination vli
+ * @src:		source array of u64 BE values
+ * @ndigits:		length of both vli and array
+ */
+void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits);
+
+/**
+ * vli_from_le64() - Load vli from little-endian u64 array
+ *
+ * @dest:		destination vli
+ * @src:		source array of u64 LE values
+ * @ndigits:		length of both vli and array
+ */
+void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits);
+
+/**
+ * vli_mod_inv() - Modular inversion
+ *
+ * @result:		where to write vli number
+ * @input:		vli value to operate on
+ * @mod:		modulus
+ * @ndigits:		length of all vlis
+ */
+void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
+		 unsigned int ndigits);
+
+/**
+ * vli_mod_mult_slow() - Modular multiplication
+ *
+ * @result:		where to write result value
+ * @left:		vli number to multiply with @right
+ * @right:		vli number to multiply with @left
+ * @mod:		modulus
+ * @ndigits:		length of all vlis
+ *
+ * Note: Assumes that mod is big enough curve order.
+ */
+void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
+		       const u64 *mod, unsigned int ndigits);
+
+/**
+ * vli_num_bits() - Counts the number of bits required for vli.
+ *
+ * @vli:		vli to check.
+ * @ndigits:		Length of the @vli
+ *
+ * Return: The number of bits required to represent @vli.
+ */
+unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits);
+
+/**
+ * ecc_aloc_point() - Allocate ECC point.
+ *
+ * @ndigits:		Length of vlis in u64 qwords.
+ *
+ * Return: Pointer to the allocated point or NULL if allocation failed.
+ */
+struct ecc_point *ecc_alloc_point(unsigned int ndigits);
+
+/**
+ * ecc_free_point() - Free ECC point.
+ *
+ * @p:			The point to free.
+ */
+void ecc_free_point(struct ecc_point *p);
+
+/**
+ * ecc_point_is_zero() - Check if point is zero.
+ *
+ * @p:			Point to check for zero.
+ *
+ * Return: true if point is the point at infinity, false otherwise.
+ */
+bool ecc_point_is_zero(const struct ecc_point *point);
+
+/**
+ * ecc_point_mult_shamir() - Add two points multiplied by scalars
+ *
+ * @result:		resulting point
+ * @x:			scalar to multiply with @p
+ * @p:			point to multiply with @x
+ * @y:			scalar to multiply with @q
+ * @q:			point to multiply with @y
+ * @curve:		curve
+ *
+ * Returns result = x * p + x * q over the curve.
+ * This works faster than two multiplications and addition.
+ */
+void ecc_point_mult_shamir(const struct ecc_point *result,
+			   const u64 *x, const struct ecc_point *p,
+			   const u64 *y, const struct ecc_point *q,
+			   const struct ecc_curve *curve);
+
+#endif
-- 
2.39.2




  parent reply	other threads:[~2024-09-06 10:44 UTC|newest]

Thread overview: 23+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2024-09-06 10:40 [PATCH v3 00/15] Add ECDSA support for FIT image verification Sascha Hauer
2024-09-06 10:40 ` [PATCH v3 01/15] keytoc: remove ECDSA dts support Sascha Hauer
2024-09-06 10:40 ` [PATCH v3 02/15] keytoc: fail in case gen_key() fails Sascha Hauer
2024-09-06 10:40 ` [PATCH v3 03/15] keytoc: fix ECDSA endianess problems Sascha Hauer
2024-09-06 10:40 ` [PATCH v3 04/15] keytoc: remove duplicate __ENV__ check Sascha Hauer
2024-09-06 10:40 ` [PATCH v3 05/15] crypto: Makefile: make simpler Sascha Hauer
2024-09-06 10:40 ` [PATCH v3 06/15] keytoc: make key name hint optional Sascha Hauer
2024-09-06 10:40 ` [PATCH v3 07/15] crypto: rsa: include key name hint into CONFIG_CRYPTO_RSA_KEY Sascha Hauer
2024-09-11  8:27   ` Ahmad Fatoum
2024-09-13  7:05     ` Sascha Hauer
2024-09-06 10:40 ` [PATCH v3 08/15] crypto: rsa: encapsulate rsa keys in public keys struct Sascha Hauer
2024-09-11  8:33   ` Ahmad Fatoum
2024-09-13  7:06     ` Sascha Hauer
2024-09-06 10:40 ` [PATCH v3 09/15] crypto: add public_key functions Sascha Hauer
2024-09-06 10:40 ` [PATCH v3 10/15] crypto: builtin_keys: Allow to specify multiple keys in CONFIG_CRYPTO_PUBLIC_KEYS Sascha Hauer
2024-09-11  8:34   ` Ahmad Fatoum
2024-09-06 10:40 ` [PATCH v3 11/15] crypto: public-keys: use array of public_keys Sascha Hauer
2024-09-11  8:38   ` Ahmad Fatoum
2024-09-06 10:40 ` [PATCH v3 12/15] crypto: rsa: create static inline wrapper for rsa_verify() Sascha Hauer
2024-09-06 10:40 ` Sascha Hauer [this message]
2024-09-06 10:40 ` [PATCH v3 14/15] crypto: add ECDSA support Sascha Hauer
2024-09-06 10:40 ` [PATCH v3 15/15] crypto: make RSA a visible option Sascha Hauer
2024-09-11  8:43 ` [PATCH v3 00/15] Add ECDSA support for FIT image verification Ahmad Fatoum

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=20240906104028.2187872-14-s.hauer@pengutronix.de \
    --to=s.hauer@pengutronix.de \
    --cc=barebox@lists.infradead.org \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox